This SuperSeries is composed of the SubSeries listed below.
Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.
Specimen part
View SamplesThe aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E15.5 whole kidneys to determine the transcriptional changes.
Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.
Specimen part
View SamplesThe aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E18.5 whole kidneys to determine the transcriptional changes.
Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.
Specimen part
View SamplesThe objective of this study was to compare recall responses to vaccine antigens at 3 months and 9 months of age in infants who were vaccinated at birth or at 1 month.
Pneumococcal conjugate vaccination at birth in a high-risk setting: no evidence for neonatal T-cell tolerance.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene.
Sex, Age, Specimen part, Cell line
View SamplesThe study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for MicroRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. In this study, microRNA profiling of stromal and epithelial cellular subsets microdissected from the developing mouse mammary gland revealed many microRNAs with expression restricted to various cellular subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo and in FACS-sorted mammary stem cells (MaSCs) versus luminal epithelial cells. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of metastatic triple negative breast cancer (TNBC) cell lines in vitro and delayed tumour formation and reduced metastasis in vivo. Gene expression studies uncovered multi-factorial direct regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. These studies elucidated a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour proliferation and metastasis.
MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene.
Sex, Specimen part, Cell line
View SamplesTumor microenvironments present significant barriers to anti-tumor agents. Molecules involved in multicellular tumor microenvironments, however, are difficult to study ex vivo. Here, we generated a matrix-free tumor spheroid model using the NCI-H226 mesothelioma cell line and compared the gene expression profiles of spheroids and monolayers using microarray analysis. Microarray analysis revealed that 142 probe sets were differentially expressed between tumor spheroids and monolayers. Gene ontology analysis revealed that upregulated genes were primarily related to immune response, wound response, lymphocyte stimulation and response to cytokine stimulation, whereas downregulated genes were primarily associated with apoptosis. Among the 142 genes, 27 are located in the membrane and related to biologic processes of cellular movement, cell-to-cell signaling, cellular growth and proliferation and morphology. Western blot analysis validated elevation of MMP2, BAFF/BLyS/TNFSF13B, RANTES/CCL5 and TNFAIP6/TSG-6 protein expression in spheroids as compared to monolayers. Thus, we have reported the first large scale comparison of the transcriptional profiles using an ex vivo matrix-free spheroid model to identify genes specific to the three-dimensional biological structure of tumors. The method described here can be used for gene expression profiling of tumors other than mesothelioma.
Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model.
Specimen part, Cell line
View SamplesChloroplast-nuclear retrograde signaling is viewed as a mechanism for inter-organelle communication. Here we show the SAL1-PAP (3-phosphoadenosine 5- phosphate) retrograde pathway functions more broadly in guard cells, interacting with abscisic acid (ABA) signaling at least in part via exoribonucleases. Unexpectedly, PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1) by priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function and stomatal closure in ost1-2. This alternative pathway up-regulates lowly expressed Calcium Dependent Protein Kinases (CDPKs) which have the capacity to activate the key slow anion channel SLAC1 in response to ABA-mediated and ost1-2 independent calcium release. The role of PAP in priming an alternative pathway to bypass components previously considered essential for stomatal closure demonstrates how a chloroplast signal can have broader roles as a secondary messenger to directly intersect with and tune hormone signaling.
A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination.
Specimen part, Treatment
View SamplesTGFBR1*6A is a common hypomorphic variant of the type 1 Transforming Growth Factor Beta Receptor (TGFBR1), which has been associated with increased cancer risk in some studies. Although TGFBR1*6A is capable of switching TGF- growth inhibitory signals into growth stimulatory signals when stably transfected into MCF-7 breast cancer cells, TGFBR1*6A biological effects are largely unknown. To broadly explore TGFBR1*6A potential oncogenic properties, we assessed its impact on the migration and invasion of MCF-7 cells. We found that TGFBR1*6A significantly enhances MCF-7 cell migration and invasion in a TGF- signaling independent manner. We set up and performed a gene array using the conditions mimicking the cell migration experiments to determine which genes in the migratory pathway were differentially regulated between the MCF-7*6A cells and the MCF-7*9A (wild type transfected) cells. The gene array identified two downregulated genes in *6A compared to *9A that are involved in cell migration and invasion: ARHGAP5, encoding ARHGAP5, and FN1, encoding fibronectin-1 (FN1). We were subsequently able to use this information in further studies in the lab.
TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation.
No sample metadata fields
View SamplesMCF-7aro cells were used to generate a cell culture model system that is resistant to 3 aromatase inhibitors (AIs), letrozole, anastrozole and exemestane. For comparison, the MCF-7aro cells were also used to generate the tamoxifen-resistant cells as well as long-term estrogen deprived, LTEDaro.
Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor.
No sample metadata fields
View Samples