We analysed the translatome and transcriptome of Arabidopsis thaliana Col-0 WT at five distinct physiological states during seed germination.
Extensive translational regulation during seed germination revealed by polysomal profiling.
Specimen part, Time
View SamplesRecent pre-clinical and clinical evidences indicate that hematopoietic stem and progenitor cells (HSPCs) and/or their progeny can serve as vehicles for therapeutic molecule delivery across the blood brain barrier by contributing to the turnover of myeloid cell populations in the brain. However, the differentiation and functional characteristics of the cells reconstituted after transplantation are still to be determined, and in particular whether bona fide microglia could be reconstituted by the donor cell progeny post-transplant to be assessed. We here firstly demonstrate that HSPC transplantation can generate transcriptionally-dependable new microglia through a stepwise process reminiscent of physiological post-natal microglia maturation. Hematopoietic cells able to generate new microglia upon transplantation into myeloablated recipients are retained within human and murine long-term hematopoietic stem cells (HSCs). Similar transcriptionally dependable new microglia cells can also be generated by intra-cerebral ventricular delivery of HSPCs. Importantly, this novel route is associated to a clinically relevant faster and more widespread microglia replacement compared to systemic HSPC injection. Overall, this work supports the relevance and feasibility of employing HSPCs for renewing brain myeloid and microglia cells with new populations endowed with the ability to exert therapeutic effects in the central nervous system, and identifies novel modalities, such as transplantation of enriched stem cell fractions and direct brain delivery of HSPCs, for increasing the actual contribution of the transplanted cells to microgliosis and their therapeutic activity. Overall design: mRNA profiles of µ and TAµ myeloid brain populations were obtained in triplicate mice of Adult control, P10 control and Adult BU-treated mice after GFP Lin-transplantation (both µ and TAµ populations)
Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells.
Specimen part, Cell line, Subject
View SamplesCardiac disease accounts for the largest proportion of adult mortality and morbidity in the industrialized world. However, progress toward improved clinical treatments is hampered by an incomplete understanding of the genetic programs controlling early cardiogenesis. To better understand this process, we set out to identify genes whose expression is enriched within early cardiac fated populations, obtaining the transcriptional signatures of mouse embryonic stem cells (mESCs) differentiating along a cardiac path.
Efficient array-based identification of novel cardiac genes through differentiation of mouse ESCs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesMesenchymal populations include a fraction of cells exhibiting multipotency as well as others with limited differentiation range. It has been assumed that the mesenchymal cellular cascade is topped by a multipotent cell, which gives rise to progeny with diminishing differentiation potentials. Here we show that cultured mesenchymal cells, a priori exhibiting a limited differentiation potential, may gain new capacities and become multipotent following single cell isolation. These fate changes were accompanied by up-regulation of differentiation promoting genes, many of which also became H4K20me1 methylated. Early events in the process included TGF and Wnt modulation, and down-regulation of hypoxia signaling. Indeed, hypoxic conditions inhibited the observed cell changes. Overall, cell isolation from neighboring partners caused major molecular changes and particularly, a newly established epigenetic state. It is suggested that MSCs behave non-deterministically and non-hierarchically and should therefore be defined primarily by their capacity to undergo fate changes triggered by environmental cues.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesMesenchymal populations include a fraction of cells exhibiting multipotency as well as others with limited differentiation range. It has been assumed that the mesenchymal cellular cascade is topped by a multipotent cell, which gives rise to progeny with diminishing differentiation potentials. Here we show that cultured mesenchymal cells, a priori exhibiting a limited differentiation potential, may gain new capacities and become multipotent following single cell isolation. These fate changes were accompanied by up-regulation of differentiation promoting genes, many of which also became H4K20me1 methylated. Early events in the process included TGF and Wnt modulation, and down-regulation of hypoxia signaling. Indeed, hypoxic conditions inhibited the observed cell changes. Overall, cell isolation from neighboring partners caused major molecular changes and particularly, a newly established epigenetic state. It is suggested that MSCs behave non-deterministically and non-hierarchically and should therefore be defined primarily by their capacity to undergo fate changes triggered by environmental cues.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesRett syndrome (RTT, OMIM #312750) is a severe X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. The disorder is almost exclusively diagnosed in females, because males affected by the disease usually die perinatally due to severe encephalopathy. Direct MeCP2 target genes underlying the neuropathogenesis of RTT remain largely unknown.
FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice.
No sample metadata fields
View SamplesCognitive deficit is a key feature of schizophrenia (SZ) and determines functional outcome. Nonetheless, molecular signatures underlying the deficit in neuronal tissues are not well understood.
Molecular signatures associated with cognitive deficits in schizophrenia: a study of biopsied olfactory neural epithelium.
Sex, Age, Specimen part, Race
View SamplesQuetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics. It is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. However, its cellular effects remain elusive.
Unique pharmacological actions of atypical neuroleptic quetiapine: possible role in cell cycle/fate control.
Sex, Treatment
View SamplesInnate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remain elusive. Here, we use a combination of genome-wide RNA-seq, ChIP-seq and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq, cytometry, and imaging analyses reveal functional compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes, and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape, and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity. Overall design: ILC1(CD45+CD3-CD19-GR1-B220-CD127+ROR?t-NkP46+), ILC2(CD45+CD3-CD19-GR1-B220-CD127+ROR?t-KLRG1+) and ILC3(CD45+CD3-CD19-GR1-B220-CD127+ROR?t+) were isolated from small intestine lamina propria of WT C57Bl/6 ROR?t-GFP mice, or antibiotics treated mice (vancomycin, ampicillin,kanamycin, and metronidazole)
The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome.
Specimen part, Cell line, Treatment, Subject
View Samples