Aging is a complex process characterized by a progressive decline in physiological integrity that leads to impaired cellular and tissue function. Adult stem cells play a critical role in organismal health and aging. Their age-related deterioration contributes to a reduced homeostatic and regenerative capacity. Notably, most studies of stem cell aging focus on the mechanisms of replicative aging in stem cells with high cellular turnover. Yet, the therapeutic potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASC), is increasingly recognized as potentially superior. The mechanism of aging in low turnover stem cells is thought to differ from those with high turnover and to more closely reflect chronological aging. The latter, however, is exceedingly difficult to study in slowly replicating primary human stem cells and thus remains poorly understood. Here, we employ our unique model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks in early chronological aging using RNA-seq analyses. Our findings demonstrate that the transcriptome of aging ASCs is more stable than that of age-matched fibroblasts. Limited transcriptional modifications in aging ASCs reveal more active transcriptional profiles of cell cycle genes and translation initiation genes when compared with aging differentiated cells. Accordingly, nascent protein synthesis, measured by incorporation of op-puromycin, is increased in ASCs from older individuals, concurrent with a decreased phosphorylation at ser-51 of eIF2, a mechanism of inhibiting translation initiation. A shortened G1 phase observed in the old ASCs could be linked to the increased protein synthesis activity, potentially resulting in more active cell proliferation. This effect, however, is not detected in aging fibroblasts. The altered regulation of cell cycle in aging ASCs could allow a more active cell proliferation to meet an increase demand to preserve tissue and organ functions. These observations are consistent with data supporting the maintenance of ASC integrity in aging human adipose tissue and reveal early chronological aging mechanisms in ASCs that are inherently different from other cell types. Overall design: Examination of the transcriptome with RNA-seq in stem cells and fibroblasts
Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.
Age, Specimen part, Cell line, Subject
View Samples18 zero-hour and 18 selected post-transplant (Tx) biopsy samples from 18 kidney allografts (8 acute kidney injury (AKI), 10 PBx - protocol biopsies - controls) were analyzed by using the Affymetrix GeneChip Human Gene 2.0 ST Array.
Molecular biomarker candidates of acute kidney injury in zero-hour renal transplant needle biopsies.
Specimen part
View SamplesProtein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.
Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular pathogenesis of post-transplant acute kidney injury: assessment of whole-genome mRNA and miRNA profiles.
Specimen part
View SamplesIn this manuscript, we present a more extensive analysis of inflammatory suppression mediated by L. plantarum at the respiratory tract. Via full genome microarray of whole lung tissue, we have generated an extensive list of soluble proinflammatory mediators that are expressed in response to PVM infection and we identify those mediators that are suppressed and also those that are not suppressed in response to L. plantarum priming. We focused further study on three specific virus-induced soluble mediators that are differentially expressed and that serve as specific biomarkers for Lactobacillus-mediated survival in response to acute respiratory virus infection. Among several novel directions, we use these biomarker cytokines to explore Lactobacillus-mediated actions at the respiratory tract that are unique and distinct from those taking place at gastrointestinal mucosa.
Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection.
Specimen part
View SamplesPurpose: The goals of this study are to use NGS to perform transcriptome profiling (RNA-seq) to find the changes of the global gene expression programs after viral mimic stimulation in Mouse Embryonic Fibroblasts (MEFs) Methods: MEFs were staimulated by 10 ug/ml Poly(dA:dT) or Poly(I:C) using Lipofectamine 2000 (Invitrogen) as transfection regaent in Opti-MEM medium for 6 hours. Mock groups were treated only with transfection regaent. Total RNA was extracted using RNeasy Mini Kit (Qiagen) according to the manufacturer protocol. Total RNA was used for library construction at the Center for Genomics and Systems Biology, New York University Abu Dhabi, using TruSeq RNA Library Prep Kit v2 (Illumina). Deep-sequencing was performed using Illumina HiSEq 2500 sequencing platform (New York University Abu Dhabi Sequencing Center). Data was processed through the standard RNAseq analysis pipeline at NYUAD. Read aligmnet was performed using tophat2 v2.1.0 against Mus musculus GRCm38.p4 genome version. Raw counts of mapped reads of each genes were derived using HTseq count. DESeq2 was used for differential expression analysis. Results: Using an optimized data analysis workflow, we identified genes up-regulated or down-regulated after anti-viral immunity activation. Gene ontology analysis further identified biological processes, cellular components and molecular functions that were overrepresented in the differentially expressed genes. Conclusions: Our study provides a good reourses for profiling genes regulations after viral immunity activation Overall design: mRNA profiles of Wild Type MEFs stimulated by viral mimics to study how global transcriptome changes after innate vrial immunity activation in non-immune cells
Analysis of Global Transcriptome Change in Mouse Embryonic Fibroblasts After dsDNA and dsRNA Viral Mimic Stimulation.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesWe used microarray analysis to investigate if keratinocytes excert an immuno-inflammatory response towards streptococcal M1 protein.
Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.
Specimen part, Cell line
View SamplesPheochromocytomas/paragangliomas are the most heritable of all tumors. However, there are still cases that are not explained by mutations in the known genes. We aimed to identify the genetic cause of disease in a patient strongly suspected of having hereditary tumors. We identified a novel de novo mutation in DNMT3A, affecting a highly conserved residue. Among other results from other techniques, a different global expression profile was observed in the patient carrying the mutated DNMT3A compared to controls (parents) by RNA-seq
Gain-of-function mutations in DNMT3A in patients with paraganglioma.
No sample metadata fields
View SamplesWe used the flu mutant of Arabidopsis and a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX) to address the interactions between different reactive oxygen species (ROS) signaling pathways. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen (1O2). Immediately after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide (H2O2), suggesting that different types of active oxygen species activate distinct signaling pathways. It was not known whether the pathways operate separately or interact with each other. We have addressed this problem by modulating noninvasively the level of H2O2 in plastids by means of a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX, line 14/2 PMID: 15165186). In the flu mutant overexpressing tAPX, the expression of most of the nuclear genes that were rapidly activated after the release of 1O2 was significantly higher in flu plants overexpressing tAPX, whereas in wild-type plants, overexpression of tAPX had only a very minor impact on nuclear gene expression. The results suggest that H2O2 antagonizes the 1O2-mediated signaling of stress responses as seen in the flu mutant. This cross-talk between H2O2- and 1O2-dependent signaling pathways might contribute to the overall stability and robustness of wild-type plants exposed to adverse environmental stress conditions.
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.
No sample metadata fields
View SamplesClimate change and disease have large negative impacts on poultry production, but little is known about the interactions of responses to these stressors in chickens. Fayoumi (heat and disease resistant) and broiler (heat and disease susceptible) chicken lines were stimulated at 22 days of age, using a 2x2x2 factorial design including: breed (Fayoumi or broiler), inflammatory stimulus [lipopolysaccharide (LPS) or saline], and temperature (35°C or 25°C). Transcriptional changes in spleens were analyzed using RNA-sequencing on the Illumina HiSeq 2500. Thirty-two individual cDNA libraries were sequenced (four per treatment) and an average of 22 million reads were generated per library. Stimulation with LPS induced more differentially expressed genes (DEG, log2 fold change = 2 and FDR = 0.05) in the broiler (N=283) than the Fayoumi (N=85), whereas heat treatment resulted in fewer DEG in broiler (N=22) compared to Fayoumi (N=107). The double stimulus of LPS+heat induced the largest numbers of changes in gene expression, for which broiler had 567 DEG and Fayoumi had 1471 DEG of which 399 were shared between breeds. Further analysis of DEG revealed pathways impacted by these stressors such as Remodelling of Epithelial Adherens Junctions due to heat stress, Granulocyte Adhesion and Diapedesis due to LPS, and Hepatic Fibrosis/Hepatic Stellate Cell Activation due to LPS+heat. The genes and pathways identified provide deeper understanding of the response to the applied stressors and may serve as biomarkers for genetic selection for heat and disease tolerant chickens. Overall design: At 22 days of age, divergent chicken breeds (Fayoumi and broiler) were treated with a thermal treatment (heat stress at 35C, or thermoneutral at 25C as a control) for 3.5 hours, then stimulated subcutaneously with an inflammatory stimulus (LPS, or saline as a control) for another 3.5 hours. Chickens were euthanized and spleens were harvested. A total of 32 indivudally coded cDNA libraries were prepared using TruSeq v2 library preparation kit which selects for polyA mRNA. In this 2x2x2 full factorial design with the factors of breed, thermal treatment, and inflammatory stimulus, there were a total of 8 treatment groups. Each treatment group had a total of 4 animal biological replicates. Therefore, a total of 32 individual barcoded samples were sequenced. A total of 8 individually barcoded cDNA libraries were sequenced per lane using the HiSeq Illumina 2500, and we used 4 lanes total. Reads were mapped to Galgal 2.0.
Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat.
Subject
View Samples