Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.
Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.
Specimen part, Cell line
View SamplesThe incidence of keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC) is increasing worldwide making it the second most common metastatic skin cancer.
EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.
Specimen part, Cell line
View SamplesThe role of Eph/ephrin signaling in numerous biological processes has been established. However, Eph/ephrin signaling has been shown to have complex role in tumor progression. The role of EphB2 receptor in the progression of cutaneous squamous cell carcinoma (cSCC) has not been studied before.
EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.
Cell line
View SamplesHydroxyapatite-coated cellulose induces a quicker and stronger inflammatory response compared to uncoated cellulose. Furthermore, the coated cellulose increases the homing at circulating bone-marrow derived progenitor cells. For this reason, Illumina microarray was used to study the early gene expression of the forming granulation tissue in the hydroxyapatite-coated sponges.
Hemoglobin expression in rat experimental granulation tissue.
Age, Specimen part, Time
View SamplesThe aryl hydrocarbon receptor (AHR) functions in higher organisims in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real-time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and an F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5'' flanking regions of some but not all of the gcy, nlp-20 and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes. Overall design: One sample was created from each of the following strains: wild-type N2, ahr-1(ia03) mutant and ahr-1(ju145) mutant. In data analysis, each mutant sample was individually compared to the wild-type sample to find differentially expressed genes.
Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans.
Subject
View SamplesThe neuronal ceroid lipofuscinoses (NCL) are a group of childhood inherited neurodegenerative disorders characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of different forms of NCL suggest that common disease mechanisms may be involved. Here, we have performed quantitative gene expression profiling of cortex from targeted knock out mice produced for Cln1 and Cln5 to explore NCL-associated molecular pathways. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating cytoskeletal dynamics and neuronal growth cone stabilization display similar aberrations. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products, Cap1, Ptprf and Ptp4a2. The evidence from the gene expression data was substantiated by immunohistochemical staining data of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in beta-tubulin and actin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in CLN1 and CLN5. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCL.
Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases.
Sex, Age, Specimen part, Disease
View SamplesCalcific aortic valve disease is the most common form of valvular heart disease in the Western World. Milder degrees of aortic valve calcification is called aortic sclerosis and severe calcification with impaired leaflet motion is called aortic stenosis.
MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease.
Specimen part, Disease, Disease stage
View SamplesThe aim of the study was to elucidate the cellular origin of ameloblastoma and keratocystic odontogenic tumour, neoplasms believed to arise from dental epithelial cells, by carrying out a genome-wide expression analysis.
Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.
Specimen part
View SamplesTranslocator protein (TSPO), previously known as the peripheral benzodiazepine receptor is a protein of unclear function in the outer mitochondrial membrane. Using TSPO gene-deleted mice, we recently demonstrated that the dogma surrounding mammalian TSPO as a cholesterol transporter essential for steroid hormone production is highly inaccurate. TSPO global knockout mice are apparently healthy and do not have any deficits in steroid hormone production. We present whole transcriptome shotgun sequencing data comparing adrenal gene expression between Tspo floxed (Tspofl/fl) and Tspo knockout (Tspo-/-) mice.
Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis.
No sample metadata fields
View Samples