The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. Meanwhile, post-mature green seeds from wild type were used as control. Overall design: Illumina sequencing of transcripts from post-mature green seeds of ddcc mutant and wild type. Two biological replicates were collected.
Similarity between soybean and <i>Arabidopsis</i> seed methylomes and loss of non-CG methylation does not affect seed development.
Specimen part, Subject
View SamplesThe essential thiol antioxidant, glutathione (GSH) is recruited into the nucleus of mammalian cells early in cell proliferation, suggesting a key role of the nuclear thiol pool in cell cycle regulation. However, the functions of nuclear GSH (GSHn) and its integration with the cytoplasmic GSH (GSHc) pools in whole cell redox homeostasis and signaling are unknown. Here we show that GSH is recruited into the nucleus early in cell proliferation in Arabidopsis thaliana, confirming the requirement for localization of GSH in the nucleus as a universal feature of cell cycle regulation.
Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.
Treatment
View SamplesTumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)
Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesThe role of abscisic acid (ABA) signalling in the ascorbic acid (AA)-dependent control of plant growth and defence was determined using the vtc1 and vtc2 mutants, which have impaired ascorbic acid synthesis, and in the abi4 mutant that is impaired in ABA-signalling. ABA levels were increase in the mutants relative to the wild type (Col0). Like vtc1 the vtc2 mutants have a slow growth relative to Col0. However, the wild type phenotype is restored in the abi4vtc2 double mutant. Similarly, the sugar sensing phenotype of in the abi4 is reversed in the abi4vtc2 double mutant. The vtc1 and vtc2 leaf transcriptomes show up to 70 % homology with abi4. Of the transcripts that are altered in the mutants a relative to Col0, only a small number are reversed in the abi4vtc2 double mutants relative to either abi4 or vtc2. We conclude that AA controls growth via an ABA and abi4-dependent signalling pathway. The vtc and abi4 mutants have enhanced glutathione levels and common redox signalling pathways leading to similar gene expression patterns.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesThe role of abscisic acid (ABA) signalling in the ascorbic acid (AA)-dependent control of plant growth and defence was determined using the vtc1 and vtc2 mutants, which have impaired ascorbic acid synthesis, and in the abi4 mutant that is impaired in ABA-signalling. ABA levels were increase in the mutants relative to the wild type (Col0). Like vtc1 the vtc2 mutants have a slow growth relative to Col0. However, the wild type phenotype is restored in the abi4vtc2 double mutant. Similarly, the sugar sensing phenotype of in the abi4 is reversed in the abi4vtc2 double mutant. The vtc1 and vtc2 leaf transcriptomes show up to 70 % homology with abi4. Of the transcripts that are altered in the mutants a relative to Col0, only a small number are reversed in the abi4vtc2 double mutants relative to either abi4 or vtc2. We conclude that AA controls growth via an ABA and abi4-dependent signalling pathway. The vtc and abi4 mutants have enhanced glutathione levels and common redox signalling pathways leading to similar gene expression patterns.
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Age, Specimen part
View SamplesDetailed analysis comparing hiPSC lines that were newly generated and compared them to already established hiPSC lines
Molecular analyses of human induced pluripotent stem cells and embryonic stem cells.
Specimen part, Cell line
View SamplesThe ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in maintenance of the tumorigenic process and in drug response. Here, we report that inhibition of DHX9 expression is lethal to multiple human and mouse cancer cell lines. In contrast, using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged suppression of DHX9 is well tolerated at the organismal level. Our results demonstrate a robust tolerance for DHX9 knockdown in non-transformed cells and supports the targeting of DHX9 as an effective and specific chemotherapeutic approach.
Tumor cell survival dependence on the DHX9 DExH-box helicase.
Specimen part
View SamplesPost-traumatic stress disorder is a concerning psycho behavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is two-fold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at “risk” of developing PTSD, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to test the hypothesis that the transcriptome can be used to track the development of PTSD in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms) were determined by RNA sequencing technology following their return from deployment to Afghanistan. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed significant differences in two genes, LRP8 and GOLM1 . These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist. Overall design: Peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms)
Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers.
Sex, Subject
View SamplesThe sensation of hunger after a period of fasting and the sensation of satiety after eating is crucial to behavioral regulation of food intake, but the biological mechanisms regulating these sensations are incompletely understood. We studied the behavioral and physiological adaptation to fasting in the vinegar fly (Drosophila melanogaster). Here we show that flies demonstrated increased behavioral attraction to food odor when food-deprived with no corresponding increase in sensitivity in the peripheral olfactory system. Flies increased their food intake transiently in the post-fasted state, but returned to a stable baseline feeding level within 24 hr after return to food. This modulation in feeding was accompanied by a significant increase in the size of the crop organ of the digestive system, suggesting that fasted flies responded both by increasing their food intake and storing reserve food in their crop. The post-fasting feeding response was observed in both male and female flies of diverse genetic backgrounds. Expression profiling of head, body, and chemosensory tissues by microarray analysis revealed several hundred genes that are regulated by feeding state, including 247 genes in the fly head. We performed RNA interference-mediated knockdown of, takeout, one of the genes strongly downregulated by fasting in multiple tissues. When takeout was knocked down in all neurons the post-fasting feeding response was abolished. These observations suggest that a coordinated transcriptional response to internal physiological state may regulate both ingestive behaviors and chemosensory perception of food
Post-fasting olfactory, transcriptional, and feeding responses in Drosophila.
Specimen part, Treatment, Time
View Samples