Primary pneumocytes from KRas;Atg5fl/+ and KRas;Atg5fl/fl littermates were cultured for 48 hours and infected with AdCre-GFP to induce expression of the KrasG12D oncogene and concomitant Atg5 deletion. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in cellular movement, inflammatory response and oxidative stress response. Overall design: Comparison of transcriptomes from KRas;Atg5fl/+ and KRas;Atg5fl/fl pneumocytes
A dual role for autophagy in a murine model of lung cancer.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesMicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to viral-associated diseases involving members of the hepacivirus, herpesvirus, and retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the lifecycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenic swine-origin influenza A virus (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral lifecycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time-points during the viral lifecycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal- and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesThe Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes.
Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells.
Specimen part
View SamplesPolycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos.
The polycomb group protein Suz12 is required for embryonic stem cell differentiation.
Specimen part
View SamplesWe have determined the global gene expression upon loss of function of the Yy1 transcription factor in mouse embryonic stem cells
Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells.
Specimen part
View SamplesThese data include RNA Seq data generated from wild type and Eed Ko intestinal crypts from AhCre and AhCreEedf/f mice. Overall design: Total RNA extracted from wild type and Eed Ko intestinal crypts.
PRC2 preserves intestinal progenitors and restricts secretory lineage commitment.
Cell line, Subject
View SamplesDownregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is thought to be implicated in motor neuron excitotoxicity in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 is cleaved by caspase-3 at the cytosolic C-terminus domain, impairing the transport activity and generating a proteolytic fragment found to be SUMO1 conjugated (CTE-SUMO1). We show here that this fragment accumulates in the nucleus of spinal cord astrocytes in vivo throughout the disease stages of the SOD1-G93A mouse model of ALS. In vitro expression in spinal cord astrocytes of the C-terminus peptide of EAAT2 (CTE), which was artificially fused to SUMO1 (CTE-SUMO1fus) to mimic the endogenous SUMOylation reaction, recapitulates the nuclear accumulation of the fragment seen in vivo and causes caspase-3 activation and axonal growth impairment in motor neuron-derived NSC-34 cells and primary motor neurons co-cultured with CTE-SUMO1fus-expressing spinal cord astrocytes. This indicates that CTE-SUMO1fus could trigger non-cell autonomous mechanisms of neurodegeneration. Prolonged nuclear accumulation of CTE-SUMO1fus in astrocytes leads to their degeneration, although the time frame of the cell-autonomous toxicity is longer than the one for the indirect toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a SUMOylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could take part to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration in ALS.
Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2.
Specimen part
View SamplesThese data include RNA Seq data generated from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa. Overall design: Total RNA extracted from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa.
Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice.
No sample metadata fields
View Samples