Puberty is a special transition period in sexual maturation, and it has been extensively studied in vertebrates in the past decades. In mammals, the initiation of puberty involves activation of numerous genes; however, there have been few comprehensive reports in small model teleosts such as the zebrafish. In the zebrafish, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles in the ovary during sexual maturation. Using transcriptomics and real-time qPCR, this study was undertaken to investigate temporal gene expression differences between the primary growth (PG) follicles and pre-vitellogenic (PV) follicles, with particular emphasis on oocyte and follicular cell specific genes as well as several closely associated signaling pathways. Our results showed that totally 1082 genes were significantly upregulated and 530 evidently downregulated during the PG-PV transition, and among them were some well recognized biomarkers such as cyp19a1a, fshr, inha and inhbaa and some novel genes like notch3, amh, gadd45ga and lpl. Further gene ontology analysis showed that egg coat formation and steroid hormone mediated signaling pathway might be critical for follicle activation from PG to PV stage. In addition, KEGG identified several signaling pathways that might play pivotal roles in early folliculogenesis, including phosphatidylinositol signaling system, glycolsaminoglycan biosynthesis, RNA transport, and p53 signaling pathways. Overall, this study reported a comprehensive analysis for biomarker genes and potential pathways involved in PG-PV transition or follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation. Overall design: Examination of gene expression patterns in 2 different stage follicles (PG and PV follicles)
Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish.
Specimen part, Cell line, Subject
View SamplesWe assessed vastus lateralis muscle gene expression levels of 12 women with the metabolic syndrome before and after a 6 month exercise training program
Upregulation of skeletal muscle inflammatory genes links inflammation with insulin resistance in women with the metabolic syndrome.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesIdentification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.
Thymic low affinity/avidity interaction selects natural Th1 cells.
Age, Specimen part
View SamplesThe leg of healthy volunteers was locally deconditioned using three weeks of unilateral lower limb suspension (ULLS). The extremely deconditioned legs of subjects with a spinal cord injury (SCI) were trained using eight weeks of functional electrical stimulation (FES) exercise, 2-3 times per week (total 20 sessions).
Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle.
Subject, Time
View SamplesHuman dendritic cells (DC) are suppressed by tumor-derived alpha fetoprotein (AFP), but less so by cord blood-derived normal AFP.
Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells.
Specimen part, Subject
View SamplesTerahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. However, the biological effect of THz radiation is not fully understood. Non-thermal effects of THz radiation were investigated by applying a femtosecond-terahertz (fs-THz) pulse to mouse skin. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly through NFB1- and Smad3/4-mediated transcriptional activation. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of transforming growth factor-beta (TGF-). These findings suggest that fs-THz radiation provokes a wound-like signal in skin with increased expression of TGF- and activation of its downstream target genes, which perturbs the wound healing process in vivo.
High-power femtosecond-terahertz pulse induces a wound response in mouse skin.
Sex, Specimen part
View SamplesRegulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. The pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. We found that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. To assess how YAP influences patterns of gene expression in Tregs, naïve CD4+ T cells and Tregs were isolated from wild type mice and CD4+ T cell lineage-restricted YAP knockout mice (YAPflox/flox, CD4-Cre+). Gene expression by naïve CD4+ T cells and their resting and stimulated Treg counterparts was analyzed by RNASeq. Our findings reveal that YAP ablation undermines expression of multiple genes involved in the TGFß/SMAD signaling pathway in Tregs including Activin. These findings suggest that YAP potentiates activity along a pro-Treg signaling axis. Overall design: The gene expression patterns in naïve T cells and nTregs from Wild type and YAP cKO (YAP flox/flox,CD4-Cre+) mice were assessed and compared using RNASeq. Sequencing was performed using a Illumina Hiseq2000.
YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity.
Specimen part, Cell line, Treatment, Subject
View SamplesIn rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. Overall design: Hippocampal RNA-Seq profiles of 28 months old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I was compared with placebo adenovector-injected counterparts (4 samples each group)
IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.
No sample metadata fields
View SamplesAIMS/HYPOTHESIS: Manoeuvres aimed at increasing beta cell mass have been proposed as regenerative medicine strategies for diabetes treatment. Raf-1 kinase inhibitor protein 1 (RKIP1) is a common regulatory node of the mitogen-activated protein kinase (MAPK) and nuclear factor B (NF-B) pathways and therefore may be involved in regulation of beta cell homeostasis. The aim of this study was to investigate the involvement of RKIP1 in the control of beta cell mass and function.
The role of Raf-1 kinase inhibitor protein in the regulation of pancreatic beta cell proliferation in mice.
Age, Specimen part
View SamplesTo determine the genes potentially responsible for the lactate-mediated gene expression regulation in hepatocellular carcinoma, we performed RNA-seq analyses on parental HepG2, HepG2/metR and oxamate-treated HepG2/metR cells. To gain mechanistic insights into the lactate-induced pro-migratory phenotypes, we established a cell model that acquired a resistance to metformin while producing lactate at a high level by selecting HepG2 cells that survived a chronic exposure to metformin for more than 5 months (HepG2/metR). In HepG2/metR cells, glycolysis rates were increased by more than 3 folds compared with parental cells, and consequently, lactate production was also highly enhanced. To clarify the gene expression regulation between the lactate level in the HepG2/metR model, we treated the cells with oxamate, an inhibitor of lactate dehydrogenase, and found that it significantly. Using a 2-fold change cut-off value in transcriptome, we selected 1,757 genes significantly up-regulated in HepG2/metR vs parental HepG2 cells. 690 genes were down-regulated by oxamate treatment in HepG2/metR cells. Eventually, we selected 136 genes that are common in the two gene sets, which may directly respond to lactate signaling Overall design: mRNA profiles of HepG2 cells, HepG2/metR (hyper-glycolytic cell model), oxamate treated HepG2/metR (decreased lactate concentration cell) were generated by deep sequencing using Illumina Nextseq 500
Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes.
Specimen part, Cell line, Treatment, Subject
View Samples