Background: The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods: We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results: The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions: Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.
Human Lacrimal Gland Gene Expression.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Specimen part
View SamplesInborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.
Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth.
Specimen part, Treatment
View SamplesMany mammalian genes are occupied by paused RNA polymerase II (pol II) at promoter-proximal regions on both sides of transcription start sites (TSSs). However, the consequences of pol II pausing on gene expression and cell biology are not fully understood. Here we report that genetic ablation of the b subunit of mouse negative elongation factor (Nelf-b), a key pol II-pausing factor, results in slower progression at multiple cell cycle stages and increased apoptosis. Consistently, a whole-genome analysis indicates that growth and cell death-related genes are highly enriched among the direct target genes of Nelf-b. In particular, Nelf-b deletion increases pol II density in the promoter-distal region of stress response genes and their overall expression levels in the absence of any external stress signals. In addition, our work also reveals a previously unappreciated role of Nelf-b role in curbing TSS-upstream transcription of many mammalian genes. We suggest that Nelf-mediated pol II pausing balances the cellular needs for growth/survival and stress response by preventing excessive basal transcription of stress-induced genes.
Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth.
Specimen part, Treatment
View SamplesAutosomal-recessive loss of the NSUN2 gene has been recently identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNA). Whether NSun2 methylates additional RNA species is currently debated. Here, we adapted the individual-nucleotide resolution UV cross-linking and immunoprecipitation method (iCLIP) to identify NSun2-mediated methylation in RNA transcriptome. We confirm site-specific methylation in tRNA and identify messenger and non-coding RNAs as potential methylation targets for NSun2. Using RNA bisulfite sequencing we establish Vault non-coding RNAs as novel substrates for NSun2 and identified six cytosine-5 methylated sites. Furthermore, we show that loss of cytosine-5 methylation in Vault RNAs causes aberrant processing into argonaute-associating small RNA fragments (svRNA). Thus, impaired Vault non-coding RNA processing may be an important contributor to the etiology of NSUN2-deficieny human disorders. Overall design: mRNA-seq in Embryonic kidney (HEK293) cells transfected with siRNA against Nsun2 vs control
NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs.
Specimen part, Cell line, Subject
View SamplesIdentification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.
Thymic low affinity/avidity interaction selects natural Th1 cells.
Age, Specimen part
View SamplesDNA microarray technology is a powerfull tool for genome-wide gene expression analysis of biological samples. Here we review the methodology for expression profiling analysis of skin tissue or purified keratinocytes from mice. We explained the methodology and protocols for RNA preservation and purification, RNA quality and integrity tests, and DNA microarray technology types that can be used. Furthermore, using a dataset of mice samples, we explained how to perform chip raw data preprocessing and normalization, differential expression analysis, as well as gene-clustering and funcional analysis of gene deregulation.
Gene expression profiling of mouse epidermal keratinocytes.
Age, Specimen part
View SamplesIt is unknown if gene expression profiles from primary RCC tumors differ from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases.
Differential gene expression profiling of matched primary renal cell carcinoma and metastases reveals upregulation of extracellular matrix genes.
Specimen part, Subject
View SamplesGene expression from cord blood stem cells and respective derived neuronal cells at different times point of differentiation:CD133+ cells;
Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.
Specimen part, Time
View Samples