The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell. (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EpiSCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR- 371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.
miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells.
Sex, Cell line
View SamplesPeripheral blood was collected from 18 Parkinson's Disease (PD) patients and 12 healthy controls (Ctrls). Total RNA was isolated and hybridized onto Affymetrix Exon_ST1 arrays to find in PDs versus controls: 1) genes that are differentiallly expressed and 2) genes with differential exonic expression (alternative splicing).
SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson's disease.
Sex, Disease, Disease stage
View SamplesEpigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development and thus aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knock-down of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia.
The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells.
Cell line
View SamplesWe used microarrays to detail the global program of gene expression underlying Parkinson's disease
A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.
No sample metadata fields
View SamplesGlobal gene expression analysis of FD-iPSC and deribved neural crest cells
Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs.
Specimen part
View SamplesThe advent of human induced pluripotent stem (iPS) cells enables for the first time the derivation of unlimited numbers of patient-specific stem cells and holds great promise for regenerative medicine. However, realizing the full potential of iPS cells requires robust, precise and safe strategies for their genetic modification. Safe human iPS cell engineering is especially needed for therapeutic applications, as stem cell-based therapies that rely on randomly integrated transgenes pose oncogenic risks. Here we describe a strategy to genetically modify iPS cells from patients with beta-thalassemia in a potentially clinically relevant manner. Our approach is based on the identification and selection of safe harbor sites for transgene expression in the human genome. We show that thalassemia patient iPS cell clones harboring a transgene can be isolated and screened according to chromosomal position. We next demonstrate that iPS cell clones that meet our safe harbor criteria resist silencing and allow for therapeutic levels of beta-globin expression upon erythroid differentiation without perturbation of neighboring gene expression. Combined bioinformatics and functional analyses thus provide a robust and dependable approach for achieving desirable levels of transgene expression from selected chromosomal loci. This approach may be broadly applicable to introducing therapeutic or suicide genes into patient specific iPS cells for use in cell therapy.
Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells.
Sex, Specimen part
View SamplesGene expression analysis, a) comparing isogenic karyotypically normal iPSCs to del7q-iPSCs, b) comparing del7q-iPSCs to spontaneously corrected iPSCs. The chr7q deletion results in reduced expression levels of a large number of genes in the chr7q deleted region
Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells.
Specimen part, Cell line
View SamplesRNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.
RNA editing generates cellular subsets with diverse sequence within populations.
Specimen part, Cell line, Subject
View SamplesAssessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.
Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.
Specimen part
View SamplesThe metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.
Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.
Sex, Age, Specimen part
View Samples