The development of vertebrate extremities is a complex process which requires a highly coordinated network of different transcriptional activities. The homeodomain transcription factor Shox2 is a key player in limb formation controlling neural, muscular and skeletal development.
Tbx4 interacts with the short stature homeobox gene Shox2 in limb development.
No sample metadata fields
View SamplesThe development of vertebrate extremities is a complex process which requires a highly coordinated network of different transcriptional activities. The homeodomain transcription factor Shox2 is a key player in limb formation controlling neural, muscular and skeletal development. Here, we compared gene expression profiles of wildtype and Shox2 knockout limbs using microarray experiments to identify Shox2 target genes.
Tbx4 interacts with the short stature homeobox gene Shox2 in limb development.
Specimen part
View SamplesWe used Affymetrix microarrays to understand the genome wide differences in Wildtype and Gli3 mutant (Gli3+/- and Gli3-/-) (n=2) embryonic day 18.5 DP CD69-, DP CD69+ and SP4 thymocytes.
Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of <i>Shh</i>.
Specimen part
View SamplesCells transiently adapt to hypoxia by globally decreasing protein translation. However, specific proteins needed to respond to hypoxia evade this translational repression. The mechanisms of this phenomenon remain unclear. We screened for and identified small molecules that selectively decrease HIF-2a translation in an mTOR independent manner, by enhancing the binding of Iron Regulatory Protein 1 (IRP1) to a recently reported Iron-Responsive Element (IRE) within the 5-untranslated region (UTR) of the HIF-2a message. Knocking down the expression of IRP1 by shRNA abolished the effect of the compounds. Hypoxia de-represses HIF-2a translation by disrupting the IRP1- HIF-2a IRE interaction. Thus, this chemical genetic analysis describes a molecular mechanism by which translation of the HIF-2a message is maintained during conditions of cellular hypoxia through inhibition of IRP-1 dependent repression. It also provides the chemical tools for studying this phenomenon.
Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing.
No sample metadata fields
View SamplesIn this study we used Genome Wide Transcriptional Modelling (GWTM) to investigate the temporal transcriptional changes during CD4 Th0, Th1 and Th2 differentiation in the first 24 hours after T cell activation. We measured the transcriptional response by RNA seq every four hours for a 24 hour time course. Overall design: WT CD4 T cells were isolated and purified from adult murine spleen. The purified CD4 cells were then set up in culture under three different conditions: Th0, Th1 and Th2. Cells were extracted at 4 hour timepoints during a 24hour timecourse and RNA was extracted for each timepoint under each condition. This RNA was further sequenced to analyse the genome wide transcriptional changes through time under each of the three conditions.
IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation.
Cell line, Subject
View SamplesProgressive tissue fibrosis is a major cause of morbidity, and idiopathic pulmonary fibrosis (IPF) is a terminal illness characterized by unremitting matrix deposition in the lung with very limited choice of therapies. The imcomplete understanding of the mechanisms of progressive fibrosis curbs the progress in therapeutics development. Of which, the origin of fibrotic fibroblasts has been poorly defined during the pathogenesis of tissue fibrosis. Here, we fate-mapped a early embryonic transcription factor T-box gene 4 (Tbx4)-derived mesenchymal progenitors in injured adult lung and found that Tbx4+ lineage cells are the major source of myofibroblasts. The ablation of Tbx4+ cells or disruption of Tbx4 signaling attenuated lung fibrosis in bleomycin injury model in mice in vivo. Furthermore, Tbx4+ fibroblasts are more invasive and the regulation of fibroblast invasiveness by Tbx4 is through mediating hyaluronan synthase 2 (HAS2). This study identified a major mesenchymal transcription factor driving the development of fibrotic fibroblasts during lung fibrosis. Understanding the origin, signaling, and functions of these fibroblasts would prove pivotal in the development of therapeutics for patients with progressive fibrotic diseases.
Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis.
Specimen part
View SamplesRNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.
RNA editing generates cellular subsets with diverse sequence within populations.
Specimen part, Cell line, Subject
View SamplesLong noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides located within the intergenic stretches or overlapping antisense transcripts of protein coding genes. LncRNAs are involved in numerous biological roles including imprinting, epigenetic regulation, apoptosis and cell-cycle. To determine whether lncRNAs are associated with clinical features and recurrent mutations in older patients (aged =60 years) with cytogenetically normal (CN) acute myeloid leukemia (AML), we evaluated lncRNA expression in 148 untreated older CN-AML cases using a custom microarray platform. Overall design: In this study, we analyzed a large set of older CN-AML patients using custom lncRNA microarrays to investigate whether lncRNA expression is associated with clinical features, molecular abnormalities and outcome and to build a prognostic lncRNA signature that was subsequently validated using RNA sequencing. This submission represents RNA-Seq component of study.
Expression and prognostic impact of lncRNAs in acute myeloid leukemia.
No sample metadata fields
View SamplesAssessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.
Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.
Specimen part
View SamplesThe metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.
Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.
Sex, Age, Specimen part
View Samples