Potassium is one of the essential macronutrients required for plant growth and development. It plays a major role in different physiological processes like cell elongation, stomatal movement, turgor regulation, osmotic adjustment, and signal transduction by acting as a major osmolyte and component of the ionic environment in the cytosol and subcellular organelles.
Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.
Specimen part, Treatment, Time
View SamplesInterleukin 9 (IL-9) producing helper T (Th9) cells play a crucial role in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune response. In addition to Th9, Th2, Th17 and Foxp3+ Treg cells produce IL-9. Transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that Foxo1, a forkhead family transcription factor, requires for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTregs. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells. Overall design: Transcriptional analysis of Th0 and TGF-beta 1 + IL-4 induced Th9 cells
Transcription factor Foxo1 is essential for IL-9 induction in T helper cells.
Specimen part, Subject
View SamplesThe proinflammatory cytokine, TNFalpha is critical in maintaining liver homeostasis since it is a major determiner of hepatocyte life and death. Considering this, gene transcription profiling was examined in control and TNFalpha treated HepG2 cells. Results indicated that TNFalpha could significantly alter the expression of a significant number of genes; most of them were functionally distributed among molecular functions like catalytic activity, binding, molecular transducer activity, transporter activity, translation and transcription regulator activities or enzyme regulator activity. Also, within genes up-regulated by TNFalpha, several GO terms related to lipid and fat metabolism were significantly overrepresented indicating global dysregulation of fat metabolism within the hepatocyte and those within the down-regulated dataset included genes involved in immunoglobulin receptor activity and IgE binding thereby indicating a compromise in immune defense mechanism(s) apart from those involved the DNA binding and protein binding categories. The interacting network of lipid metabolism, small molecule biochemistry was derived to be significantly affected that correlated well with the top canonical pathway of biosynthesis of steroids and molecular and cellular function of lipid metabolism. All these indicate TNFalpha to be significantly altering the transcriptome profiling within HepG2 cells with genes involved in lipid and steroid metabolism being the most favoured. This study suitably addresses the genes that determine TNFalpha mediated alterations within the hepatocyte mainly the phenotypes of hepatic steatosis and fatty liver that are associated with several hepatic pathological states.
Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells.
No sample metadata fields
View SamplesThe identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ~13000 habenular cells (>4x coverage) identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a common reference atlas created a rich resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Overall design: gng8-GFP zebrafish heads were dissected, dissociated and FAC sorted into 96 well plates. Single cell libraries were generated in batches of 384 cells using Smart-seq2. A total of 22 gng8-GFP fish were dissected in 3 batches and 384 cells were processed from each using Smart-seq2.
Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.
Specimen part, Subject
View SamplesAutosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1null/null), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. We examined the molecular pathways that modulate renal cyst growth in the Pkd1null/null model by performing global gene-expression proling in embryonic kidneys at day 14 and 17. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1null/null kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-b and MAPK) in Pkd1null/null kidneys.
Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease.
Specimen part
View SamplesThe heat-shock stress response was studied at the level of exons using Affymetrix Exon-array profiling for both sense and anti-sense transcripts. Sense transcript profiling was done as per the protocol of Affymetrix Exon 1.0 ST array and anti-sense transcript array profiling was done using a modified protocol (Xijin Ge et al., BMC Genomics. 2008 Jan 22;9:27).
Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.
Sex, Specimen part, Cell line
View SamplesThe repertoire of transcripts that are differentially regulated in response to Heat-shock were studied using Illumina WG-6 v2.0 BeadChip.
Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.
Sex, Specimen part, Cell line
View SamplesDifferential expression of genes between Arabidopsis WRKY18/40 knock out and wild type plants, after 8 h post inoculation of powdery mildew pathogen.
Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.
Specimen part, Time
View SamplesAndrogens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. Previously, we showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Furthermore, we have shown that metformin inhibits androgen production of steroidogenic H295R cells and inhibits complex I activity of the respriatory chain. Therefore, to search for underlying mechanisms regulting androgen production and to understand the basic biology of androgens, we have characterized the gene expression profile of H295R cells grown under normal growth conditions, serum starvation (hyperandrogenic) growth conditions as well as after metformin treatment (hypoandrogenic).
Retinoic acid receptor beta and angiopoietin-like protein 1 are involved in the regulation of human androgen biosynthesis.
Cell line
View SamplesThe restoration of catalytic activity to mutant enzymes by small molecules is well-established for in vitro systems. Here we show that the protein tyrosine kinase Src R388A mutant can be rescued in live cells using the small molecule imidazole. Cellular rescue of a v-Src homolog was rapid and reversible and conferred predicted oncogenic properties. Using chemical rescue in combination with mass spectrometry, six known Src kinase substrates were confirmed, and several new protein targets identified. Chemical rescue data suggests that c-Src is active under basal conditions. Rescue of R388A c-Src also allowed contributions of Src to the MAP kinase pathway to be clarified. This chemical rescue approach is likely to be of broad utility in cell signaling.
Chemical rescue of a mutant enzyme in living cells.
No sample metadata fields
View Samples