Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB.
Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y.
Cell line
View SamplesA unique embryonic stem cells showing nave state was established from primplantation mouse blastocyst but maintaind their self renew under FGF2 stimulus condition
Development of FGF2-dependent pluripotent stem cells showing naive state characteristics from murine preimplantation inner cell mass.
Specimen part, Cell line
View SamplesTo identify potential targets of miR-34a, we performed transcriptional profiling on proneural TS543 GBM cells, focusing on mRNAs whose levels decreased in response to miR-34a transfection as compared to control oligonucleotide.
miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis.
Cell line, Treatment
View SamplesWe found constitutive upregulation and higher degree induction of drug metabolism and disposition-related genes in a three-dimensional HepG2 culture. The upregulated genes are those believed to be regulated by different regulatory factors. The global gene expression analysis by Affymetrix GeneChip indicated that altered expressions of microtubule-related genes may change expressed levels of drug metabolism and disposition genes. Stabilization of the microtubule molecules with docetaxel, a tubulin stabilizing agent, in the two-dimensional culture showed gene expression patterns similar to those in the three-dimensional culture, indicating that culture environment affects drug metabolism functions in HepG2 cells.
Global gene expression changes including drug metabolism and disposition induced by three-dimensional culture of HepG2 cells-Involvement of microtubules.
No sample metadata fields
View SamplesGene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. U95A Affymetrix DNA chips that contain oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced-genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell-adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signaling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T-cells. Some of the upregulated genes, such as TGM1, IVL, CSTA, FABP5 and SPRR, are well known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the 51 significantly upregulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic IFN and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.
Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals.
No sample metadata fields
View SamplesGlioblastomas (GBMs) are divided into CpG Island Methylator Phenotype (CIMP) and non-CIMP tumors. Non-CIMP GBMs derive from cells with non-disjunction of chromosome (chr7) and chromosome 10 (chr10), resulting in chr7 gain and chr10 loss, while CIMP GBMs have mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2). Gain of chr7 is largely driven by PDGFA, but other genes on chr7 are likely to contribute to fitness gains and aggressiveness of these GBMs. We computationally investigated genes on chr7 whose gene expression correlated with survival, identifying HOXA5 as a potential driver of proneural gliomagenesis. Using a combination of human GBM cells and mouse PDGF-driven gliomas, we showed that HOXA5 drives increased proliferation and radiation resistance in culture and in vivo. These phenotypes appear to be in part due to effects on p53 and other apoptosis-related genes.
Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma.
Disease
View SamplesThe onset of the liver inflamentation in the Sox17+/- embryos.
Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice.
Specimen part
View SamplesPatients with oncogene driven tumors are currently treated with targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors. The inhibited oncogenic pathway often interacts with other signaling pathways and alters predicted therapeutic response. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates pervasive molecular alterations to EGFR, MAPK, and PI3K signaling in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to infer the complex pathway interactions that result from EGFR inhibitor use in cancer cells that contain these these common EGFR network genetic alterations. To do this, we modified the HaCaT keratinocyte cell line model of premalignancy to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measured gene expression after treating modified HaCaT cells with three EGFR targeted agents (gefitinib, afatinib, and cetuximab) for 24 hours.
CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network.
Cell line, Treatment
View SamplesTo determine the expression AP2-alpha target genes, global gene expression of 7 HNSCC cell lines with and without cetuximab treatment (100 nM, 24 hrs) and the HaCaT keratinocyte cell line was performed.
CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network.
Specimen part, Cell line
View SamplesThe vast majority of supratentorial ependymomas (ST-EPNs) have few mutations other than chromosomal rearrangements on chromosome 11, most generating a fusion between C11orf95 and RELA (CR). This CR fusion can transform stem cells ex vivo rendering them oncogenic and may possess NF-?B activity, which has been proposed to be a mechanism of oncogenesis. However, it is not known whether CR is sufficient for EPN formation in vivo, and from what cell type and location. We found that CR is sufficient to form tumors from cells in the ependymal zone in mice that show many molecular and histologic similarities to human ST-EPN. Furthermore, the activation of NF-?B by this fusion protein appears minimal and not related to its oncogenic activity Overall design: C11orf95-RELA is a potent oncogene for supratentorial ependymoma
A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB.
Specimen part, Subject
View Samples