In vitro differentiated Th17 have a distinct expression profile compared to in vivo differentiated Th17
Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis.
Specimen part
View SamplesThe study compares gene expression profile at 20 days post amputation of the zebrafish ventricular heart between dusp6 mutant and WT siblings. Overall design: Ventricular resection was performed and 20 dpa, hearts were extracted.
Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.
No sample metadata fields
View SamplesDNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC culture conditions and under differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) and treatment with Retinoic Acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background, and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency, and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines we could find that maGSCs share a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study comparing ESCs and a pluripotent cell line derived from an adult organism (maGSCs) on transcriptome level.
Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.
Specimen part
View SamplesThe tryptophan degrading enzyme TDO2 is downregulated upon HIF1alpha stabilization by exposure to both hypoxia as well as chemical hypoxia mimetics such as DMOG in glioblastoma cell line A172.
Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma.
Cell line
View SamplesWe performed gene expression profiling of total RNA from brain samples derived from BSE-infected versus non-infected cynomolgus macaques (Macaca fascicularis).
Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques.
Sex, Age, Specimen part
View SamplesIn this study we could show that the treatment of primary murine prostate cancer(PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma ofmouse prostate) model with the histone deacetylase inhibitor (HDI) valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 as a family member of the highly conserved Dtype cyclins in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. The observed cyclin D2 re-expression in cancer cells is activated by an increase of histone acetylation in the promoter region of the cyclin D2 gene and might be the underlying molecular mechanism of the inhibition of proliferation of cancer cells after VPA treatment. Taken together, our results confirm VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression.
Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2.
Specimen part
View SamplesThis study addresses long-term effects of clinically relevant regimens of radiation in human glioma stem cells. Our investigations reveal a strikingly diverse spectrum of changes in cell behavior, gene expression patterns and tumor-propagating capacities evoked by radiation in different types of glioma stem cells. Evidence is provided that degree of cellular plasticity but not the propensity to self-renew is an important factor influencing radiation-induced changes in the tumor-propagating capacity of glioma stem cells. Gene expression analyses indicate that paralell transcriptomic responses to radiation underlie similarity of clinically relevant cellular outcomes such as the ability to promote tumor growth after radiation. Our findings underscore the importance of longitudinal characterizations of molecular and cellular responses evoked by cytotoxic treatrments in glioma stem cells.
Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes.
Treatment
View SamplesWe aimed to determine the characteristic of 3 different ILC subsets (ILC1, 2 and 3) isolated from human blood. Overall design: mRNA profile of ILC1, ILC2 and ILC3
Gene expression signatures of circulating human type 1, 2, and 3 innate lymphoid cells.
Subject
View SamplesThe objective is to relate changes in expression of DOR/TRP53INP2, a factor involved in thyroid hormone action and autophagy, to body composition in mice fed a fat (FD) or high fat diet (HFD) for 8 days and in a genetically obese mouse model.
Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues.
Sex, Age, Specimen part
View SamplesMammalian genomes are organized into megabase-scale topologically associated domains (TADs) that have been proposed to represent large regulatory units. Here we demonstrate that disruption of TADs can cause rewiring of long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. Overall design: RNA-seq profile of developing distal limbs of mutants and WT animals at E11.5
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.
No sample metadata fields
View Samples