LMO2 overexpressing transgenic mouse models suggest an accumulation of immature T-cell progenitors in the thymus as main pre-leukemic event. The effects of LMO2 overexpression on human T-cell development in vivo, however, are unknown. Here we report studies of a humanized mouse model transplanted with LMO2 transduced human hematopoietic stem and progenitor cells. The effects of LMO2 overexpression were confined to the T-cell lineage although initially multipotent cells were transduced. Three effects of LMO2 on human T-cell development were observed: 1) a block at the DN/ISP stage, 2) an accumulation of CD4+CD8+ double positive CD3- cells and 3) an altered CD8/CD4 ratio with enhanced peripheral T lymphocytes
Overexpression of LMO2 causes aberrant human T-Cell development in vivo by three potentially distinct cellular mechanisms.
Specimen part
View SamplesA deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) leads to chronic lung disease. However, the molecular mechanisms are not well understood and therapies that can help all patients remain elusive. CF is associated with abnormalities in fatty acids, ceramides and cholesterol, therefore we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array and RNAseq analyses. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and long- to very long- chain ceramide species (LCC/VLCC). The anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and apparent oxidative stress, confirming the CFTR dependence of lipid ratios. RNA sequencing and protein array analysis revealed higher expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions. Treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, Orkambi and Trikafta, did not suppress the inflammatory phenotype. These results suggest that anti-inflammatory therapies may provide additional benefit for CF patients taking CFTR modulator drugs. Overall design: Here we report analysis of nine samples, three of Cf patient (BCF000174), homozygous for F508del CFTR, compared to two non-CF in triplicate each (P21, P11, ErasmusMC, Rotterdam, compared pairwise)
CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells.
Specimen part, Disease, Disease stage, Subject
View Samples