The goal of the study was to determine global expression differences and commanlities in three different Reeler mutant mosue models. Phenotypically mice deficient in Reelin, Dab1 or both Reelin receptors apoEr2 and Vldlr exhibit a severe Reeler phenotype.
CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.
Sex, Age, Specimen part
View SamplesGlioblastoma (GBM) is a highly aggressive type of glioma with poor prognosis. However, a small number of patients live much longer than the median survival. A better understanding of these long-term survivors (LTS) may provide important insight into the biology of GBM. We identified 7 patients with GBM treated at Memorial Sloan-Kettering Cancer Center (MSKCC) with survival greater than 48 months. We characterized the transcriptome of each patient and determined rates of MGMT promoter methylation and IDH1 and IDH2 mutational status. We identified LTS in two independent cohorts (TCGA and REMBRANDT) and analyzed the transcriptomal characteristics of these LTS. The median overall survival of our cohort was 62.5 months. LTS were distributed between the proneural (n=2), neural (n=2), classical (n=2) and mesenchymal (n=1) subtypes. Similarly, LTS in the TCGA and REMBRANDT cohorts demonstrated diverse transcriptomal subclassification identity. The majority of the MSKCC LTS (71%) were found to have methylation of the MGMT promoter. None of the patients had an IDH1 or IDH2 mutations, and IDH mutation occurred in a minority of the TCGA LTS as well. A set of 42 genes was found to be differentially expressed in the MSKCC and TCGA LTS. While IDH mutant proneural tumors impart a better prognosis in the short-term, survival beyond 4 years does not require IDH mutation and is not dictated by a single transcriptional subclass. In contrast, MGMT methylation continues to have strong prognostic value for survival beyond 4 years. These findings have substantial impact for understanding GBM biology and progression.
Transcriptional diversity of long-term glioblastoma survivors.
Disease stage
View SamplesExpression data from pancreatic cancer cell lines and non-neoplastic pancreatic cell line HPDE
Cyclooxygenase-deficient pancreatic cancer cells use exogenous sources of prostaglandins.
Sex, Specimen part, Disease, Cell line
View SamplesGene expression analysis of pancreatic cancer associated fibroblasts and control fibroblasts
Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts.
Specimen part, Disease
View SamplesMyocarditis is an inflammatory disease in the heart and is mainly caused by viral infections. Viral myocarditis has been proposed to be divided into three phases; the acute viral phase, the subacute immune phase, and the chronic cardiac remodeling phase. Although individualized therapy should be applied depending on the phase, no clinical or experimental studies have found biomarkers that distinguish between the three phases of myocarditis. Theilers murine encephalomyelitis virus (TMEV) belongs to the genus Cardiovirus, and can cause myocarditis in susceptible mouse strains. Using this novel model for viral myocarditis induced with TMEV, we conducted multivariate analysis including echocardiography, serum troponin and viral RNA titration, and microarray for identifying the biomarker candidates that discriminate the three phases. Using C3H mice infected with TMEV on 4, 7, and 60 days post infection (p.i.), we conducted bioinformatics analyses, including principal component analysis (PCA) of microarray data, since our traditional cardiac and serum assays, including two-way comparison of microarray data, did not lead to the identification of a single biomarker. PCA separated heart samples clearly between the groups of 4, 7, and 60 days p.i. Representative genes contributing to the separation were as follows: 4 and 7 days p.i., innate immunity-related genes, such as Irf7, and Cxcl9; 7 and 60 days p.i., acquired immunity-related genes, such as Cd3g and H2-Aa; and cardiac remodeling-related genes, such as Mmp12 and Gpnmb. Here, sets of molecules, but not a single molecule, identified by the unsupervised PCA, were found to be useful as the phase-specific biomarkers.
Bioinformatics multivariate analysis determined a set of phase-specific biomarker candidates in a novel mouse model for viral myocarditis.
Sex, Specimen part, Time
View SamplesBackground: Increasing evidence indicates stem cell transplantation may be an effective stroke treatment but little is known about the direct impact of transplanted cells on injured brain tissue. We investigated the effects of lineage negative murine hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation following ischemia-reperfusion injury (I/RI). Following subsequent evaluation of the mRNA transcriptome of the explanted HSPCs, we assessed whether metallothionein (MT)-1, (increased in explanted HSPCs from I/R mice) administration was able to evoke similar neuro-protection following cerebral I/RI. Methods and Results: Murine HSPCs administered intravenously 24 hours (h) post cerebral I/R were selectively recruited to the brain of I/RI mice. Mice treated with HSPCs displayed decreased disease severity for up to 2-weeks post cerebral I/R, as evidenced by decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation and elevated plasma levels of anti-inflammatory interleukin-10. Using confocal intravital microscopy, we found that transplanted cells had emigrated into the brain parenchyma and that RNA-seq analysis of explanted HSPCs indicated significantly increased levels of metallothionein transcripts, in particular MT-1. We further determined that treatment of mice with MT-1 significantly reduced neurological score and IV. Conclusions: These studies provide further evidence for HSPCs as a promising therapeutic strategy in promoting repair following cerebral I/RI, potentially via a MT-1 mechanism. Overall design: Murine HSPCs were administered into mice with I/RI intravenously 24 hours post cerebral I/R and selectively recruited to the brain. RNA profiles of explanted HSPCs were determined by RNA sequencing.
Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.
Specimen part, Cell line, Treatment, Subject
View SamplesTheiler's murine encephalomyelitis virus (TMEV) induces different diseases in the central nervous system (CNS) and heart, depending on the mouse strains and time course, where cytokines play a key role for viral clearance and immune-mediated pathology (immunopathology). In SJL/J mice, TMEV infection causes chronic TMEV-induced demyelinating disease (TMEV-IDD) in the spinal cord around 1 month post infection (p.i.). Unlike other immunopathology models, both pro-inflammatory and anti-inflammatory cytokines can play dual roles in TMEV-IDD. Pro-inflammatory cytokines play a beneficial role in viral clearance while they also play a detrimental role in immune-mediated demyelination. Anti-inflammatory cytokines suppress not only protective anti-viral immune responses but also detrimental autoreactive immune responses. On the other hand, in C3H mice, TMEV infection induces a non-CNS disease, myocarditis, with three phases: phase I, viral pathology with interferon and chemokine responses; phase II, immunopathology mediated by acquired immune responses; and phase III, cardiac fibrosis. Although the precise mechanism how a single virus, TMEV, induces the distinct diseases in different organs is unclear, principal component analysis (PCA) of transcriptome data allows us to identify the key factors contributing to distinct immunopathology. The PCA demonstrated that in vitro infection of a cardiomyocyte cell line could reproduce the transcriptome profile of phase I in TMEV-induced myocarditis; distinct interferon/chemokine-related responses were induced in vitro in infected cardiomyocytes, but not in infected neuronal cells. In addition, the PCA of in vivo CNS transcriptome data showed that decreased lymphatic marker expression was associated with inflammation in TMEV infection. Here, dysfunction of lymphatic vessels may contribute to immunopathology by delaying clearance of cytokines and immune cells from the inflammatory site, although this might confine the virus at the site, preventing virus spread via lymphatic vessels. On the other hand, in the heart, dysfunction of lymphatics was associated with reduced lymphatic muscle contractility by pro-inflammatory cytokines. Therefore, TMEV infection could induce different cytokine expressions as well as lymphatic vessel dysfunction by the distinct mechanism between the CNS and heart, which might contribute to organ-specific immunopathology. Overall design: Transcriptome analysis of spinal cords from TMEV-infected mice at 4, 7, and 35 days post infection.
Bioinformatics Analysis of Gut Microbiota and CNS Transcriptome in Virus-Induced Acute Myelitis and Chronic Inflammatory Demyelination; Potential Association of Distinct Bacteria With CNS IgA Upregulation.
Sex, Specimen part, Cell line, Subject, Time
View SamplesIn adipocyte-specific knockout mice (Bcl6AKO), we found that Bcl6 deletion results in strikingly increased inguinal but not perigonadal adipocyte size and tissue mass in addition to marked insulin sensitivity. Genome-wide DNA binding and RNA expression analyses revealed that BCL6 controls gene networks involved in cell growth and fatty acid biosynthesis. Thus, our studies identify BCL6 as a negative regulator of subcutaneous adipose tissue expansion and metabolic health. Overall design: Identification of adipocyte BCL6-regulated genes
Loss of Transcriptional Repression by BCL6 Confers Insulin Sensitivity in the Setting of Obesity.
Sex, Specimen part, Subject
View SamplesPancreatic ductal adenocarcinoma (PDAC) is a nearly uniformly lethal malignancy, with most patients facing an adverse clinical outcome. Given the pivotal role of aberrant Notch signaling in the initiation and progression of PDAC, we investigated the effect of MRK-003, a potent and selective -secretase inhibitor, in preclinical PDAC models. We used a panel of human PDAC cell lines, as well as patient-derived PDAC xenografts, to determine whether pharmacological targeting of the Notch pathway could inhibit pancreatic tumor growth and potentiate gemcitabine sensitivity. In vitro, MRK-003 treatment downregulated the canonical Notch target gene Hes-1, significantly inhibited anchorage independent growth, and reduced the subset of CD44+CD24+ and aldehyde dehydrogenase (ALDH)+ cells that have been attributed with tumor initiating capacity. Ex vivo pretreatment of PDAC cells with MRK-003 in culture significantly inhibited the subsequent engraftment in immunocompromised mice. In vivo, MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) patient-derived PDAC xenografts. Moreover, a combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared to gemcitabine alone in 4 of 9 (44%) PDAC xenografts. Baseline gene expression analysis of the treated xenografts indicated that upregulation of nuclear factor kappa B (NFB) pathway components was associated with the sensitivity to single MRK-003, while upregulation in B-cell receptor (BCR) signaling and nuclear factor erythroid-derived 2-like 2 (NRF2) pathway correlated with response to the combination of MRK-003 with gemcitabine. The preclinical findings presented here provide further rationale for small molecule inhibition of Notch signaling as a therapeutic strategy in PDAC.
The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models.
Specimen part
View SamplesGene expression analysis of motor cortex after spinal C3 lesion
A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program.
Sex, Specimen part, Time
View Samples