Group living animals must be able to express different behavior profiles depending on their social status. This implies that the same genotype may translate into different behavioral phenotypes through socially driven differential gene expression. Here we show for the first time that what triggers the switch between status-specific neurogenomic states is not the objective structure of the social interaction but rather the subjects perception of its outcome. For this purpose we had male zebrafish fight either a real opponent or their own image on a mirror. Massive changes in the brain transcriptome were observed in real opponent fighters, which experience either a victory or a defeat. In contrast, mirror fighters, which had no information on fight outcome despite expressing aggressive behavior, failed to activate a neurogenomic response. These results indicate that, even in cognitively simple organisms such as zebrafish, neurogenomic responses underlying changes in social status rely on cognitive appraisal.
Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain.
Specimen part
View SamplesInfluenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and economy. Therefore, a large effort has been devoted to the development of new anti-influenza drugs directed to viral targets, as well as to the identification of cellular targets amenable for anti-influenza therapy. Here we describe a new approach to identify such potential cellular targets by screening collections of drugs approved for human use. We reasoned that this would most probably ensure addressing a cellular target and, if successful, the compound would have a well known pharmacological profile. In addition, we reasoned that a screening using a GFP-based recombinant replicon system would address virus trancription/replication and/or gene expression, and hence address a stage in virus infection more useful for inhibition. By using such strategy we identified Montelukast as an inhibitor of virus gene expression, which reduced virus multiplication in virus-infected cells but did not alter virus RNA synthesis in vitro or viral RNA accumulation in vivo. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated or not with Montelukast, we identified the PERK-mediated unfolded protein response as the pathway responsible for Montelukast action. Accordingly, PERK phosphorylation was inhibited in infected cells but stimulated in Montelukast-treated cells. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. Overall design: Comparison of gene expression measured by deep sequencing (single-ends, 50nt, RNA-seq) of "Infected", "Not infected", "Infected+Montelukast" and "Not infect+Montelukast" in human A549 cells. Infected means "Infected with influenza virus".
Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition.
No sample metadata fields
View SamplesHeat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.
Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.
Specimen part
View SamplesThe change of genome-wide transcription profiles as a result of Gis1 overexpression is monitored by comparing the transcriptomes isolated from cells where Gis1 overexpression is switched on or off. GIS1 was cloned into pCM190 vector under the control of the tetO7 promoter. The promoter is switched on when there is no doxycycline but off with doxycycline (20ug/ml). Cells were grown in medium with doxycycline, harvested, washes twice in sterile water, resuspended in the same medium with doxycycline (Dox+) or without doxycycline (dox-) and grown for additional 6 hours. Samples were taken for each condition at 3 and 6 hours. Time 0 sample was taken before resuspension.
The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis.
Subject, Compound, Time
View SamplesInnate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to evade innate immune response and to ensure their survival. Using transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts host antiviral response by its association with the catalytic subunit of protein phosphatase 1 (PP1c). A transcriptomic analysis was performed to further investigate the effect of gene 7 absence on the host cell.
Alphacoronavirus protein 7 modulates host innate immune response.
Specimen part, Cell line, Time
View SampleshCLE/C14orf166/RTRAF, DDX1 and HSPC117 are components of cytoplasmic mRNA-transporting granules kinesin-associated in dendrites. They have also been found in cytoplasmic ribosome-containing RNA granules that transport specific mRNAs halted for translation until specific neuronal signals renders them accessible to the translation machinery. hCLE associates to DDX1, HSPC117 and FAM98B in HEK293T cells and all four proteins bind to cap analog-containing resins. Competition and elution experiments indicate that binding of hCLE complex to cap resins is independent of eIF4E; the cap-binding factor needed for translation. Purified hCLE free of its associated proteins binds cap with low affinity suggesting that its interacting proteins modulate its cap association. hCLE silencing reduces hCLE accumulation and that of its interacting proteins and decreases mRNA translation. hCLE-associated RNAs have been isolated and sequenced; RNAs involved in mRNA translation are specifically associated. The data suggest a positive role of hCLE complex modulating mRNA translation. Overall design: Standard RNA-seq protocol was applied for comparing two sample types (HEK293T cells transfected with hCLE-TAP plasmid or empty TAP) with two biological replicates each. More than 20 million single-end, strand-specific 50 nt reads were generated for each sample.
hCLE/RTRAF-HSPC117-DDX1-FAM98B: A New Cap-Binding Complex That Activates mRNA Translation.
Cell line, Subject
View SamplesThe highly conserved herpesvirus glycoprotein complex, gB/gH-gL, mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multi-nucleated cells, or syncytia, during the infection of human tissues but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. The gBcyt regulation is necessary for VZV pathogenesis as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt regulated fusion was investigated by comparing melanoma cells infected with wild type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytia formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization and rapid displacement of nuclei to dense central structures when compared to pOka using live cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using RNA-seq to identify viral and cellular responses induced when the gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and glycoproteins, gC, gE and gI, was significantly reduced at 36 hours post infection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate the gBcyt in the regulation gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. Overall design: Biological duplicates from 3 time points (12, 24 and 36 hours post infection) of uninfected MeWo cells or MeWo cells infected with varicella-zoster virus strain pOka or mutants gB[Y881F], gB[Y920F] or gB[Y881/920F]
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.
Cell line, Subject, Time
View SamplesPrimordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However when removed from their embryonic niche PGCs undergo reversion to generate pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) involves variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. In the current study we show that reverting PGCs to EGCs involves ICC methylation erasure, which remain stably hypomethylated at Snrpn, Igf2r and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes almost complete de novo remethylation. Using the same approach for PGCs differentiated in vitro from ESCs we show that the Snrpn ICC is erased however the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC is abnormally hypermethylated in ESCs, ICC methylation is not erased with differentiation into PGCs. This highlights the importance of not only launching germline differentiation with correctly methylated ESC lines but also the need to better stabilize the hypomethylated state in the in vitro derivatives following ICC erasure. Overall design: RNA seq of E9.5 PGCs, iPGCs, PGCLCs and EGCs using small cell numbers from start. N=2 biological replicates in 2 technical sequencing replicates.
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation.
No sample metadata fields
View SamplesExpression of DREAM in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that DREAM participates in the control of trigeminal pain perception through the regulation of prodynorphin and BDNF. Furthermore, genome-wide analysis of trigeminal neurons in daDREAM transgenic mice revealed that cathepsin L (CTSL) and the monoglyceride lipase (MGLL) are new DREAM downstream targets and have a role in the regulation of trigeminal nociception.
Transcriptional repressor DREAM regulates trigeminal noxious perception.
Specimen part
View SamplesThe mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the true nature of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-Seq over a 24-hour light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase-shifting of the circadian clock. 342 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms. Overall design: Pooled dissected tissue of the suprachiasmatic nucleus from five adult male mice provided one of three replicates for each of six timepoints over a 12:12 light/dark (LD) cycle (ZT2, 6, 10, 14, 18 and 22). Each biological replicate was sequenced over 3 seperate lanes using Illumina HiSeq.
Temporal transcriptomics suggest that twin-peaking genes reset the clock.
Specimen part, Cell line, Subject
View Samples