Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention. Overall design: This entry contains data from the following analyses: (1) Bulk RNA-seq of mouse VSMCs isolated from aortic arch (AA) and descending thoracic aorta (DT) regions in triplicates. (2) Pooled RNA-seq of mouse Sca1- VSMCs and Sca1- or Sca1+ adventitial cells in triplicates. (3) Single-cell RNA-seq of VSMCs from the AA and DT regions (143 cells). (4) VSMC lineage label positive and negative cells isolated from the medial layer of mouse aorta, which expressed or did not express the Sca1 protein (155 cells). (5) 10X single-cell RNA-seq analysis of: lineage positive plaque cells isolated from mice following 14 or 18 weeks of high fat diet feeding, cells isolated from the whole aorta and lineage positive VSMCs from the medial layer.
Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels.
Specimen part, Subject
View SamplesWe report the application of RNA sequencing technology for high-throughput profiling of gene expression responses to human rhinovirus infection at 24 hours in air-liquid interface human airway epithelial cell cultures derived from 6 asthmatic and 6 non-asthmatic donors. RNA-seq analysis identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1), and novel ones that were identified for the first time in this study (e.g. CCRL1, CDHR3). We concluded that air liquid interface cultured human airway epithelial cells challenged with live HRV are a useful in vitro model for the study of rhinovirus induced asthma exacerbation, given that our findings are consistent with clinical data sets. Furthermore, our data suggest that abnormal airway epithelial structure and inflammatory signaling are important contributors to viral induced asthma exacerbation. Overall design: Differentiated air-liquid interface cultured human airway epithelial cell mRNA profiles from 6 asthmatic and 6 non-asthmatic donors after 24 hour treatment with either HRV or vehicle control were generated by deep sequencing, using Illumina HiSeq 2000.
Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans.
No sample metadata fields
View SamplesThe oocytes of most animals arrest at diplotene or diakinesis, but resume meiosis (meiotic maturation) in response to hormones. In C. elegans, maturation of the 1 oocyte requires the presence of sperm, Gas-adenylate cyclase-PKA signaling in the gonadal sheath cells, and germline function of two Tis11-like CCCH zinc-finger proteins, OMA-1 and OMA-2 (OMA proteins). Prior studies indicate that the OMA proteins redundantly repress the translation of specific mRNAs in oocytes (zif-1, mom-2, nos-2, glp-1) and early embryos (mei-1).
Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans.
No sample metadata fields
View SamplesThe oocytes of most animals arrest at diplotene or diakinesis, but resume meiosis (meiotic maturation) in response to hormones. In C. elegans, maturation of the –1 oocyte requires the presence of sperm, Gas-adenylate cyclase-PKA signaling in the gonadal sheath cells, and germline function of two Tis11-like CCCH zinc-finger proteins, OMA-1 and OMA-2 (OMA proteins). Prior studies indicate that the OMA proteins redundantly repress the translation of specific mRNAs in oocytes (zif-1, mom-2, nos-2, glp-1) and early embryos (mei-1). We purified OMA-1-containing ribonucleoprotein particles (RNPs) and identified mRNAs that associate with OMA-1 in oocytes using microarrays. We examined the relative abundances of mRNAs in OMA-1 RNPs using high-throughput RNA sequencing. Previously identified targets of OMA-dependent translational repression in oocytes were found to be both enriched (>2-fold relative to input RNA) and abundant in purified OMA-1 RNPs. Furthermore, we verified that some of the newly identified mRNAs that share these characteristics are translationally repressed by OMA-1/2 in oocytes through sequences in their 3’UTRs. Although meiotic maturation is stimulated by sperm, we found that the mRNAs copurifying with OMA-1 are not significantly different in the presence and absence of sperm, suggesting that sperm-dependent signaling does not modify the suite of mRNAs stably associated with OMA-1. Further, several tested OMA-1-associated mRNAs were shown to be translationally repressed in both the presence and absence of sperm. Overall design: C. elegans mRNAs that co-purify with OMA-1 were identified by deep-sequencing using the Illumina HiSeq 2000
Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans.
Subject
View SamplesWe analysed the capacity of THP-1 cells (differentiated to macrophagoid cells) to recognize RNA sequences via pattern recognition receptors in vitro. Gene expression was analysed by RNA-Microarray. Cytokine production was analysed by ELISA assays.
Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA.
Cell line, Treatment
View SamplesThe gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesWe used microarrays to investigate gene expression changes in leukemic cells from Pax5+/- mice treated with antibiotics.
An intact gut microbiome protects genetically predisposed mice against leukemia.
Sex, Specimen part, Treatment
View SamplesAnalysis of gene expression over serial 150um sections of a single gestational week 14.5 human neocortical specimen. The hypothesis tested with this dataset was that a transcriptional signature of radial glia (neural stem cells) could be isolated via unsupervised gene coexpression analysis due to variation in the abundance of this cell type from section to section. This dataset is the first of its kind generated using this method (Gene Coexpression Analysis of Serial Sections, or GCASS).
Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex.
Age, Specimen part
View SamplesExpression profiling analyses for 5 maize inbreds and 4 hybrids, chosen to represent diversity in genotypes and heterosis responses, revealed a correlation between genetic diversity and transcriptional variation. The majority of differentially expressed genes in each of the different hybrids exhibited additive expression patterns, and ~25% exhibited statistically significant non-additive expression profiles. Among the non-additive profiles, ~80% exhibited hybrid expression levels between the parental levels, ~20% exhibited hybrid expression levels at the parental levels and ~1% exhibited hybrid levels outside the parental range. These findings indicate that the frequencies of additive and non-additive expression patterns are very similar across a range of hybrid lines.
Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis.
No sample metadata fields
View Samples