The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b, which are active in the early embryo, resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through microarray analysis as well as in situ hybridization.
B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.
Specimen part
View SamplesPericytes confer vascular stability in the retina, and the loss of pericytes can cause the blood-retina barrier breakdown seen in diabetic retinopathy. To identify endothelial-specific genes expressed in pericyte-deprived retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice treated with neutralizing antibody against PDGFRb (APB5) and performed gene expression profiling using DNA microarray. To find out endothelial-specific genes associated with the loss of pericyte coverage, the comparison of microarray data was carried out between retinal endothelial cells (data from GSE27238) and APB5-treated retinal endothelial cells.
Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown.
Specimen part
View SamplesAnalysis to find splicing variants that are differentially expressed in a highly metastatic stomach cancer cell line, MKN45P, versus its parental cell line, MKN45
Identification of a novel protein isoform derived from cancer-related splicing variants using combined analysis of transcriptome and proteome.
Specimen part, Cell line
View SamplesSpermatogonial stem cells (SSCs) have pluripotent potential. However, frequency of pluripotent cell derivation is low and the mechanism of culture-induced reprogramming remains unknown. Here we report that epigenetic instability of germline stem (GS) cells, cultured SSCs, induces pluripotent cell derivation. GS cells undergo DNA demethylation in H19 differentially methylated region under low-density culture. When H19 demethylation was induced by Dnmt1 depletion, they converted into embryonic stem (ES)-like cells. Dnmt1 depletion downregulated Dmrt1 expression, whose depletion also induced pluripotency. Functional screening of Dmrt1 target gene revealed that Dmrt1 depletion upregulates Sox2, the key molecule responsible for generating induced pluripotent stem cells. Although Sox2 transfection upregulated Oct4 and produced pluripotent cells, this conversion was inhibited by Oct1 overexpression, suggesting that the balance of Oct proteins maintains SSC identity. These results suggest that culture-induced reprogramming is caused by unstable DNA methylation, and that Dmrt1-Sox2 cascade is critical for regulating pluripotency in SSCs.
Regulation of pluripotency in male germline stem cells by Dmrt1.
Specimen part, Treatment
View SamplesEndurance-trained athletes have high oxidative capacity, enhanced insulin sensitivity, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle.
Endurance Runners with Intramyocellular Lipid Accumulation and High Insulin Sensitivity Have Enhanced Expression of Genes Related to Lipid Metabolism in Muscle.
Sex, Specimen part
View SamplesA single spermatogonial stem cell can aquire pluripotentiality but that conversion into a pluripotent cell type is accompanied by loss of spermatogenic potential.
Pluripotency of a single spermatogonial stem cell in mice.
No sample metadata fields
View SamplesThe fetal ovarian grafts under the kidney capsule of adult male mice undergo a partial sex-reversal showing ectopic SOX9-positive Sertoli cell-like cells around 15-20 days post-transplantation. However, the molecular bases of such masculinization of fetal ovaries in the paternal environment were unclear.
Molecular and genetic characterization of partial masculinization in embryonic ovaries grafted into male nude mice.
Specimen part
View SamplesThe mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis for the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice, and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression was significantly deceased in spermatozoa from Zfy1/2-DKO mice compared with those from wild type mice. These results are consistent with the phenotypic changes seen in the double mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.
Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
Specimen part, Cell line
View SamplesHepatocellular carcinoma (HCC) is a heterogeneous disease with a variety of etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multifocal recurrence. Comprehensive molecular evaluation of HCC by multiplatform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying DNA hypermethylation; and (3) metabolic syndrome-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly discriminated HCC with intrahepatic metastasis (IM) from multicentric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not linked to the IM/MC diagnosis, but rather the integrated classification. Thus, identification of these HCC subtypes provides insights into patient stratification and opportunities for therapeutic development.
Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
Specimen part
View Samples