Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their phenotypical diversity has not been sufficiently explored. The aim of this study was to elucidate the phenotypical diversity of human fibroblasts within the whole body.
Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.
Sex, Age, Specimen part
View SamplesGene expression profiling of BMMC from patients with rheumatoid arthritis (RA) vs. osteoarthritis (OA).
Abnormal networks of immune response-related molecules in bone marrow cells from patients with rheumatoid arthritis as revealed by DNA microarray analysis.
Sex, Age, Specimen part, Disease
View SamplesFibroblasts isolated from human colon submucosal and subperitoneal layer were stimulated by colon cancer cell line (DLD-1) cultured medium. Peritoneal invasion in colon cancer is an important prognostic factor, and the fibrosis with -SMA was a significant pathological feature of the cancer microenvironment formed by peritoneal invasion (CMPI).
Human subperitoneal fibroblast and cancer cell interaction creates microenvironment that enhances tumor progression and metastasis.
Sex, Age, Specimen part
View SamplesIn order to find the difference between human lung tissue-derived fibroblasts and human vascular adventitial fibroblasts for enhancing tumor formation ablity of human lung adenocarcinoma cell line A549, we found that human vascular adventitial fibroblasts enhance A549 tumor formation in vivo compared to human lung tissue-derived fibroblasts. To find the responsible genes for this phenomena, we used microarray analysis to find the expression difference between lung tissue-derived fibroblasts and vascular adventitial fibroblas
Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression.
Specimen part
View SamplesTo analyze Mueller glia specific gene expression, Hes1-promoter-dEGFP mice was used. dEGFP positive and negative retinal fractions were purified by a cell sorter and subjected to RNA-seq Overall design: Examination of mRNA expression patterns in Hes1-positive (Hes1P) retinal cells and Hes1-negative (Hes1N) retinal cells at 2 developmental timepoints.
Analysis of Müller glia specific genes and their histone modification using Hes1-promoter driven EGFP expressing mouse.
Specimen part, Cell line, Subject
View SamplesTo explore TNF-related genes in GPI-induced arthritis, we performed GeneChip analysis using arthritic splenocytes and control-immunized splenocytes. Among the arrayed TNFalpha-related genes, TIARP mRNA was highly expressed in arthritic splenocytes, with levels exceeding more than 20-times the control splenocytes
Tumor necrosis factor alpha-induced adipose-related protein expression in experimental arthritis and in rheumatoid arthritis.
Sex, Specimen part
View SamplesWe aimed to examine the gene expression changes responding to a depletion of intracellular S-adenosylmethionine (SAM). The mouse plasma cell line X63/0 was treated with the SAM-synthetase inhibitor cycloleucine (cLEU), and the total RNA was isolated and analyzed by RNA-sequencing. As a result, we idntified 27 genes, including the ubiquitous SAM-synthetase MAT2A, whose expssions were up-regulated by two-fold or more. Overall design: Total RNA was extracted from the mouse plasma cell line X63/0 before/after a three-hour treatment with 30 mM cycloleucine. This experiment was triplicated, and the resulting six samples were applied to RNA-sequencing.
S-Adenosylmethionine Synthesis Is Regulated by Selective N<sup>6</sup>-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1.
Specimen part, Cell line, Subject
View SamplesThe transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.
Specimen part, Treatment
View SamplesTemporal analysis of B cell activation in vitro using CD40L and IL-2/4/5 cytokines in wild type Irf4+/+ B cells or in mutant Irf4-/- B cells harboring a tet-inducible allele of Irf4. IRF4 expression was restored, or not, in the Irf4-/- background by culturing in the presence of low or high concentrations of doxycycline. The results provide insight in the role of IRF4 expression levels in coordinating different programs of B cell differentiation.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Artificially induced epithelial-mesenchymal transition in surgical subjects: its implications in clinical and basic cancer research.
Specimen part, Disease, Disease stage, Subject
View Samples