Context dependent molecular cues shape the formation of the cerebral vascular network and the function of the blood-brain barrier (BBB). The Wnt/ß-catenin pathway is orchestrating CNS vascular development, but downstream mediators have not been characterized. Here we generated an endothelial cell-specific R26-Axin1 overexpression (AOE) mouse model to inhibit Wnt/ß-catenin signaling. In AOE mice we discovered that blockade of Wnt/ß-catenin pathway leads to premature regression and remodeling without compromising BBB integrity. Importantly, by comparing transcriptomes of endothelial cells from wildtype and AOE mice, we identified ADAMTSL2 as a novel Wnt/ß-catenin-induced, secreted factor, important for stabilizing the BBB during development. Zebrafish loss-of-function and gain-of-function models, further demonstrated that ADAMTSL2 is crucial for normal vascular development and could rescue vascular phenotypes in AOE zebrafish brains. In conclusion, the studies presented here reveal a hitherto unrecognized role of ADAMTSL2 as an endothelial cell-specific mediator of Wnt/ß-catenin signaling during CNS vascular development and BBB-formation. Overall design: Examination of expression changes in mouse brain endothelial cells when overexpressing Axin1
Disruption of the Extracellular Matrix Progressively Impairs Central Nervous System Vascular Maturation Downstream of β-Catenin Signaling.
No sample metadata fields
View SamplesProstate cancer (PC) is initially dependent on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to repress AR activity, such as those reducing circulating androgen levels, serve as the primary intervention for advanced disease. However, supraphysiological androgen (SPA) concentrations, can produce a paradoxical response leading to growth inhibition. We sought to determine the mechanisms by which SPA represses PC growth and determine if molecular context associates with anti-tumor effects. Overall design: RNA sequencing of LNCaP human prostate tumor cell lines using Illumina TruSeq Library prep and sequenced on Illumina HiSeq 2500.
Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesAndrogen receptor (AR) signaling is a distinctive feature of prostate cancer (PC) and represents the major therapeutic target for the treatment of metastatic disease. Though highly effective, AR antagonism has the potential to generate tumors that bypass a functional requirement for AR activity. We show here that a phenotypic shift has occurred in metastatic PCs with the emer-gence of a double-negative AR-null neuroendocrine-null phenotype that is notable for MAPK and FGF pathway activity. To identify mechanisms capable of sustaining PC survival, we gener-ated a model system designated AR program-independent prostate cancer (APIPC) which re-sists AR-targeted therapeutics, lacks neuroendocrine features, expresses high levels of FGF8 and the ID1 oncogene, and activates MAPK signaling. Pharmacological blockade of MAPK or FGF signaling inhibited APIPC tumor growth, supporting FGF/MAPK as a therapeutic avenue for treating AR-null PC. Overall design: RNA sequencing of human prostate tumor cell lines using the Illumina TruSeq Library prep and sequenced on Illumina HiSeq 2500.
Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling.
Sex, Specimen part, Cell line, Subject
View Samples