Removal of the transcription factor SAP1a member of the Ternary Complex Factor (TCF) group of transcription factors which in conjunction with Serum Response Factor (SRF) has been shown to have a profound effect on positive selection in the thymus. When another TCF Elk1 is knocked out in mice there is no effect on positive selection unless it is on a Sap1a KO background where the phenotype is very severe. We have stimulated isolated double positive T cells (DPs) with anti-CD3 to mimic positive selection and compared basal and stimulated transcription across the four genotypes to discover the downstream targets of Sap1a involved in positive selection.
Ternary complex factors SAP-1 and Elk-1, but not net, are functionally equivalent in thymocyte development.
Sex, Age, Specimen part, Treatment
View SamplesAblation of the Srf gene in dopaminoceptive neurons of the brain was performed using the Cre/loxP system, with the recombinase expressed from a BAC-derived Drd1a promoter.
Loss of the serum response factor in the dopamine system leads to hyperactivity.
No sample metadata fields
View SamplesSerum response factor (SRF), a MADS-box transcription factor, is essential for murine embryonic development and for the function of muscle cells and neurons. SRF and its transcriptional co-factors are broadly expressed. To determine the in vivo role of SRF in developing lymphocytes we specifically inactivated the murine Srf gene during T or B cell development using lymphocyte-specific Cre transgenic mouse lines. T cell-specific Srf deletion led to a severe block in thymocyte development at the transition from double to single positive stage. The few residual T cells detectable in the periphery retained at least one functional Srf allele, thereby demonstrating the importance of SRF in T cell development. In contrast, deletion of Srf in developing B cells did not interfere with the growth and survival of B cells in general, yet led to a complete loss of marginal zone B cells and a marked reduction of the CD5+ B cell subset. Our study also revealed a contribution of SRF to the expression of the surface molecules IgM, CD19, and the chemokine receptor 4 in B lymphocytes.
Serum response factor contributes selectively to lymphocyte development.
Specimen part
View SamplesMegakaryoblastic Leukemia 1 and 2 (MKL1 and 2) are coactivators of the transcription factor Serum Response Factor (SRF). We recently showed that depletion of MKL1 and 2 abolished HCC xenograft growth, associated with oncogene-induced senescence. To identify suitable MKL target genes mediating these effects, we performed microarray analyses using HuH7 hepatocellular carcinoma cells stably expressing shRNA against MKL1/2 (HuH7 MKL1/2 KD). We therefore used a Affymetrix oligonucleotide array and filtered for genes whose expression in HuH7 MKL1/2 KD cells was reduced by a factor of at least 2.5 as compared to control HuH7 cells.
The novel MKL target gene myoferlin modulates expansion and senescence of hepatocellular carcinoma.
Specimen part
View SamplesHighly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. There is still an ongoing threat that these viruses may acquire the capability to freely spread as novel pandemic virus strains that may cause major morbidity and mortality. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. It has been suggested, that this cytokine overexpression is an intrinsic feature of infected cells and involves hyperinduction of p38 mitogen activated protein kinase (MAPK). Here we investigate the role of MAPK p38 signaling in the antiviral response against HPAIV in mice as well as in endothelial cells, the latter a primary source for cytokines during systemic infections.
Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection.
Specimen part
View SamplesHUVEC were left untreated or stimulated for 5h with 2 ng/ml TNF. Comparsion of the gene profiles revealed TNF-mediated gene expression changes in HUVEC.
TNF induces distinct gene expression programs in microvascular and macrovascular human endothelial cells.
No sample metadata fields
View SamplesHMEC cultures were left untreated or stimulated for 5h with 2 ng/ml TNF. Comparison of the gene expression profiles revealed the TNF-mediated gene expression changes.
TNF induces distinct gene expression programs in microvascular and macrovascular human endothelial cells.
No sample metadata fields
View SamplesIn this study the gene expression in cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells, next generation sequencing was performed, and the reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular virions was measured, showing a relative amount of virus RNA 13 times higher in the cells infected with the lytic variant, vVP1Q164K, compared to cells infected by the non-lytic CVB2Owt. Furthermore, differential gene expression in the cells infected with the two viruses was identified and a number of genes singled out as possible keys to the answer of how the viruses interact with the host cells, resulting in lytic or non-lytic infections. Overall design: 4 samples, two samples of one strain, one sample of a different strain, and one control sample
The Transcriptome of Rhabdomyosarcoma Cells Infected with Cytolytic and Non-Cytolytic Variants of Coxsackievirus B2 Ohio-1.
No sample metadata fields
View SamplesUsing a mimic miR-200c was restored to an aggressive, Type 2 endometrial cancer cell line, Hec50
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.
Specimen part, Cell line
View SamplesPiwi proteins and Piwi-interacting small RNAs (piRNAs) have known functions in transposon silencing in the male germline of fetal and newborn mice. Both are also necessary for spermatogenesis in adult testes, however, their function here remains a mystery. Here, we use germ cell isolations and small RNA sequencing to show that most piRNAs in meiotic spermatocytes originate from clusters in intergenic non-repeat regions of DNA. The regulation of these piRNA clusters, including the processing of the precursor transcripts into individual piRNAs, is accomplished through mostly unknown processes. We present evidence for a regulatory mechanism for one such cluster, named cluster 1082B, located on chromosome 7 in the mouse genome, containing 788 unique piRNAs. The precursor transcript and individual piRNAs within the cluster are repressed by the Alkbh1 dioxygenase and the transcription repressor Tzfp, which are believed to be interaction partners in testis. We observe more than a thousand-fold upregulation of individual piRNAs in pachytene spermatocytes isolated from Alkbh1-/- and TzfpGTi/GTi testes. Repression is further supported by the identification of a 10 bp Tzfp recognition sequence contained within the precursor transcript. Downregulation of long interspersed elements 1 (LINE1) and intracisternal A-particle (IAP) transcripts in the Alkbh1-/- and TzfpGTi/GTi testes leads us to propose a potential role for the 1082B-encoded piRNAs in transposon silencing. Overall design: Characterization of small RNAs in mouse pachytene spermatocytes for wild-type (WT) and Alkbh1-/- and TzfpGTi/GTi, and mRNA in mouse pachytene spermatocytes for wild-type (WT) and Alkbh1-/-
Alkbh1 and Tzfp repress a non-repeat piRNA cluster in pachytene spermatocytes.
Specimen part, Subject
View Samples