We sought to identify the carcinogenic mechanisms involved in RKO cell line with no evidence of activated -catenin/TCF regulated transcription, by comparison its gene expression profile to that of group of colorectal cancer cell lines selected to be mismatch repair
The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription.
Cell line
View SamplesAndrogen receptor (AR) is typically overexpressed in castration-resistant prostate cancer (CRPC). CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs). This study analyzed direct transcription programs of the AR, the prevalence of AR enhancers and the transcriptional regulators involved in the regulation of at the enhancer regions. The analysis utilized global nuclear run-on sequencing (GRO-seq). The GRO-seq data were integrated with the ARB and VCaP cell-specific transcription factor-binding data. Androgen in 30 min activated and repressed transcription of a large number of genes including novel AR targets IGF-1 receptor and EGF receptor. GRO-seq analysis also revealed that only a fraction of the ARBs resides at functional enhancers. Activation of AR bound enhancers was most potent at the sites that also bound PIAS1, ERG and HDAC3. Our genome-wide data provide new insights how AR can directly control growth-signaling pathways in CPRC cells. Overall design: ChIP-seq samples were collected from cells treated with vehicle (ethanol, EtOH) or 10 nM R1881 (synthetic androgen methyltrienolone). IgG sample was collected from EtOH- and R1881-treated cells and used as background control. Biological duplicate samples of the AR (R1881-treated) and CTCF (vehicle- and R1881-treated) ChIP-seq samples were analyzed by using Illumina HiSeq 2000 platform 1.9. Single IgG and H3K9me3 (R1881-treated) samples were analyzed with the same platform. GRO-seq was used to determine androgen-induced changes in nascent transcription in VCaP and LNCaP cells.
Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets.
No sample metadata fields
View SamplesEndothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic adenosine monophosphate signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells. Consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy. Overall design: Comparison of the effects of signalling factors and small molecules on endothelial cell differentiation from induced pluripotent stem cells using RNA-Seq. Following small molecules and growth factors were used in different combinations and time courses: 10 uM TGFß-inhibitor SB431542, 10 uM ROCK-inhibitor Y-27632, 20 ng/ml recombinant human BMP-4 and 0,25 mM 8-Br-cAMP. In all groups without TGFß-inhibitor at day 1 in the differentiation, it was added at day 4. In those groups with BMP-4 at day 1, it was removed at day 4. Differentiating ECs were passaged every 4-6 days using Accutase.
Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules.
Specimen part, Cell line, Subject
View Samples[Gro-seq] Precursor B acute leukemia cells measured using global nuclear run-on sequencing [ChIP-Seq] The genome-wide occupancy of ser2 and ser5 phosphorylated RNA pol2 and H3K4me3 was measured in precursor B acute leukemia cells measured using chip-seq. Overall design: [Gro-seq] Nascent RNA expression profiles were generated at cells in various basal culture conditions. [ChIP-Seq] Performed from REH and Nalm6 cells cultured under basal culture conditions. Mnase digestion was used for DNA fragmentation. Antibodies against Ser2 and Ser5 phosphorylated RNA polymerase and H3K4me3 compared to input. ****************************** This study includes reanalysis of Samples in Series GSE39878 (GSM980645, GSM980644), GSE60454 (GSM1480326), and GSE41009 (GSM1006728, GSM100672). The processed data files for the reanalyses are linked to GSE67540 as supplementary files (see the GSE67540_README.txt file for additional information).
Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots.
No sample metadata fields
View SamplesObjective: Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of Vascular Endothelial Growth Factor (VEGF) family to lipid metabolism but the function of VEGF-D has remained unexplored. Here we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/-ApoB100/100 mice. Approach and Results: Deletion of VEGF-D (Vegfd-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of syndecan 1 (SDC1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGF receptor 3 led to lowered expression of genes regulating triglyceride and cholesterol production as well as downregulation of peroxisomal ß-oxidation pathway. Conclusions: These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice. Overall design: Gene expression profiling of mouse liver tissue from control and VEGF-D knock-out mice. Control and VEGF-D KO mice were both in C57Bl/6 and atherosclerotic background, i.e., deficient of LDLR and expressing only apolipoprotein B100.
Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants.
Specimen part, Cell line, Subject
View SamplesActivation of telomerase often endows cancer cells, but rarely normal somatic cells, with immortality. Especially, fetal lung fibroblasts are known to be hardly immortalized by TERT overexpression. We here established an immortal non-transformed lung fibroblast cell line only by TERT transfection, as well as an immortal transformed cell line by transfection of TERT and SV40 early antigens. Comparing the expression profiles of these cell lines with those of mortal cell strains with elongated lifespan after TERT transfection, 51 genes, including 19 upregulated and 32 downregulated, were explored to be the candidates responsible for regulation of cellular proliferation of lung fibroblasts. These included the genes previously reported to be involved in cellular proliferation, transformation, or self-renewal capacity, and those highly expressed in lung tissues obtained from patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis. This set of lung fibrobrast cell lines/strains of identical genetic background with different proliferative capacity, mortal and immortal non-transformed fibroblasts may become useful model cells for research on lung fibroblast growth regulation and the candidate genes explored in this study may provide promising biomarkers or molecular targets of pulmonary fibrosis.
Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesUtilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorhpic C. elegans mutants in nuclear-encoded subunits of respiratory chain complexes I, II and III.
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesUtilizing C. elegans as a model of mitochondrial dysfunction provides insight into cellular adaptations which occur as a consequence of genetic alterations causative of human disease. We characterized genome-wide expression profiles of hypomorphic C. ele
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans.
No sample metadata fields
View SamplesScreening for genes regulated by Etv2 within Flk-1+/PDGFRa+ ES derived mesoderm.Microarray analysis performed to screen for the candidate genes regulated by Etv2. TT2 ES cells differentiated on OP9 feeder cells were sorted using Flk-1 and PDGFRa antibodies.Gene expressions from these two populations were compared.
Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm.
Cell line
View Samples