refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 301 results
Sort by

Filters

Technology

Platform

accession-icon GSE25480
Expression data from Adam10 knock out mice and wild type
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adam10, a cell surface protease, cleaving many proteins including TNF-alpha and E-cadherin. Here we investigate the genome wide effects of Adam10 knock out on the transcriptome.

Publication Title

The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107999
Stage-specific metabolic features of differentiating neurons: implications for toxicant sensitivity
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.

Publication Title

Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE23394
Expression data from human NHL cell lines treated with agonistic antibodies
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD20 is a clinically validated target for Non-Hodgkins lymphomas and autoimmune diseases. Interactions of CD20 with the B cell receptor (BCR) and components of the BCR signaling cascade have been reported. In this study we show that antibodies against CD20 or activation of the BCR by specific antibodies induce very similar expression patterns of up- or down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa.

Publication Title

Antibodies against CD20 or B-cell receptor induce similar transcription patterns in human lymphoma cell lines.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE31199
Down-regulation of cholesterol biosynthesis in forebrains of ERCC1-deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Several genetic defects of the nucleotide excision repair (NER) pathway, including deficiency of the Excision Repair Cross-Complementing rodent repair deficiency, complementation group 1 (ERCC1), result in pre-mature aging, impaired growth, microcephaly and delayed development of the cerebellum. Such a phenotype also occurs in ERCC1-knockout mice which survive for up to 4 weeks after birth. Therefore, we analyzed cerebellar and hippocamapal transcriptomes of these animals at 3 weeks of age to identify the candidate mechanisms underlying brain consequences of reduced ERCC1 activity.

Publication Title

Downregulation of cholesterol biosynthesis genes in the forebrain of ERCC1-deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43578
Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2-/-) embryos - unable to synthesize RA from maternally-derived retinol - using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic clustering analysis allowed us to extract groups of genes displaying similar behaviors in mutant tissue samples. These data give an overview of the gene expression changes occurring under a state of embryonic RA deficiency, and provide new candidate genes and pathways for a better understanding of retinoid-dependent molecular events.

Publication Title

Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1693
A novel response to microtubule perturbation in meiosis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Cells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted into YPA (YEP + 2% potassium acetate) at OD600= 0.3 and grown over night at 30C. Cells were washed with sterilized water the next day and re-suspended in SPII medium (0.3% potassium acetate, pH = 7.0) at OD600= 1.9 to induce sporulation. Cells were sporulated at room temperature or 30C as indicated. Sporulation medium containing benomyl was always prepared freshly on the day of the experiment following the directions in {Shonn, 2000 #90}. Briefly, DMSO (dimethyl sulfoxide, Sigma-Aldrich) or benomyl [Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate, Sigma-Aldrich; 30 mg/ml stock in DMSO] was dissolved in near-boiling SPII medium to avoid precipitation. The medium was then allowed to slowly cool to 30C or room temperature. At the time of drug treatment, cells were filtered and immediately re-suspended in the medium containing benomyl or DMSO.

Publication Title

Novel response to microtubule perturbation in meiosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44246
Human foreskin fibroblasts (HFFs) infected with type I strains of Toxoplasma gondii
  • organism-icon Toxoplasma gondii, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44189
Expression data from human foreskin fibroblasts (HFFs) infected with type I strains of Toxoplasma gondii.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Type I strains of Toxoplasma gondii exhibit phenotypic variation, but it is uncertain how differently type I strains modulate the host cell. We determined differential host modulation by type I strains through microarray.

Publication Title

Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP091012
Intersectionally labeled Drd2-Pet1 single-neuron RNA-seq
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single-neuron transcriptome profiles of Dorsal Raphe neurons marked by a history of expression of Drd2::Cre and Pet1::Flpe (GFP+), as well as Dorsal Raphe neurons marked by a history of Pet1::Flpe expression only (mCherry+). Overall design: GFP and mCherry expressing neurons from triple transgenic Drd2::Cre;Pet1::Flpe;RC:FrePe mice were acutely dissociated, manually sorted, and single-neuron RNA-seq was performed (17 GFP+ cells, 8 mCherry+ cells).

Publication Title

Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE90149
Mesenchymal stromal cell transcriptome study
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptomes of mesenchymal stromal cells from bone marrow (bmMSC) were compared to MSC from term placenta (pMSC).

Publication Title

Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact