The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature ("THP1r2Mtb-induced signature"). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen.
An interferon-related signature in the transcriptional core response of human macrophages to Mycobacterium tuberculosis infection.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.
Cell line
View SamplesTo better understand the molecular mechanisms underlying altered-FGFR3 oncogenic activity in bladder carcinomas, we made use of RT112 cell lines, which were derived from a human bladder tumor and endogenously expressed the FGFR3-TACC3 fusion protein, the growth and transformation of these cell lines being dependent on activated-FGFR3 activity. We conducted a gene expression analysis using Affymetrix DNA arrays in this cell line treated or not with FGFR3 siRNAs.
An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.
Cell line
View SamplesThe heart responds to pathological overload through myocyte hypertrophy. In our study, we found that this response is regulated by cardiac fibroblasts via a novel paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). PMCA4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out PMCA4 specifically in cardiomyocytes does not produce this effect. Mechanistically, our microarray data on fibroblasts isolated from PMCA4 WT and PMCA4 knockout animals showed that cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes.
The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy.
Sex, Age, Specimen part
View Samplesin the present study, we evaluated whether microbiota modulation is able to restore hepatic steatosis induced by n-3 PUFA depletion in mice. For this purpose, mice were fed during three months with a n-3 PUFA-depleted diet (presenting a high n-6/n-3 PUFA ratio), and then supplemented with fructooligosaccharides (FOS, 0.25g/day/mice), a prebiotic, during the last ten days of the experiment (DEF/FOS). In the same time, some n-3 PUFA-depleted mice were returned on a control diet during the last 10 days of treatment (DEF/CT) to compare the effect of FOS supplementation to a restored intake in n-3 PUFA. Microarray analyses were performed to identify the molecular targets modified by FOS supplementation in the liver of n-3 PUFA depleted mice. These mice were compared to control mice (fed a control diet during the 112 days of experiment) and to n-3 PUFA-depleted mice (fed a n-3 PUFA-depleted diet during the 112 days of experiment) for which the results have been previously published (Pachikian B.D. et al. PLoS One. 2011;6(8):e23365, accession number GSE26986)
Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways.
Sex, Specimen part, Treatment
View SamplesIn the present study, we investigated the consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice fed during three months with a diet presenting a high n-6/n-3 PUFA ratio to induce n-3 PUFA depletion. Microarray analyses were performed to identify the molecular targets involved in the development of hepatic steatosis associated with n-3 PUFA depletion.
Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.
Sex, Specimen part, Treatment
View SamplesTranscriptional profiling of 6-day-old seedlings of Arabidopsis wild type control and mutants is performed using Affymetrix IVT Arabidopsis ATH1 Genome Array.
Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development.
Age, Specimen part
View SamplesBACKGROUND:Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking.
"Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".
Specimen part
View SamplesBy using a genetically accurate mouse model, we demonstrate that endogenous expression of oncogenic N-RasG12D and Tet2 haploinsufficiency collaborate to accelerate CMML development in mice. Gene expression was compared across all genotypes (WT, Tet2+/-, NrasG12D/+ and double mutants) in bone marrow-derived hematopoietic stem cells (CD150+CD48-Lin-Sca1+cKit+) using RNA-seq. N-RasG12D and Tet2 haploinsufficiency cooperate to induce both unique and overlapping effects on HSC gene expression programs. Overall design: Gene expression profiling in FACS-sorted SLAM HSCs from 10-12 week old wild type control (n=3), NrasG12D/+ single mutant (n=3), Tet2+/- single mutant (n=3) and NrasG12D/+;Tet2+/- double mutant (n=3) mice.
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.
No sample metadata fields
View Samples