Regulatory T cells (Treg) are common in the tumor microenvironment in both human pancreatic cancer and in genetically engineered mouse models of the disease. Previous studies in orthotopic syngeneic models of pancreatic cancer -recapitulated in our own data- indicated that Treg depletion results CD8+ T cell-mediated tumor regression. In human patients and in mouse models, regulatory T cells accumulate during the onset of Pancreatic Intraepithelial Neoplasia (PanIN), the earliest steps of carcinogenesis. We thus generated a genetic model to investigate the role of regulatory T cells during the onset of pancreatic carcinogenesis. Unexpectedly, depletion of Tregs during early stages of carcinogenesis led to accelerated tumor progression. Overall design: We are using KC;Foxp3DTR mice generated by crossing KC (Ptf1a-Cre;LSL-KrasG12D) with Foxp3DTR (B6.129(Cg)-Foxp3tm3(DTR/GFP)Ayr/J, Jackson Laboratory). We depleted Foxp3-expressing Tregs by Diphtheria Toxin (DT) injection to determine the requirement of Tregs during oncogenic Kras induced Pancreatic Intraepithelial Neoplasia (PanIN) formation and maintenance. To investigate the mechanisms underlying the tumor-promoting effect of Treg depletion in KC; Foxp3DTR mice we performed RNA sequencing (RNAseq) for myeloid cells (DAPI-EpCAM-CD45+CD11b+) flow-sorted from KC and KC; Foxp3DTR pancreata.
Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrating factor analysis and a transgenic mouse model to reveal a peripheral blood predictor of breast tumors.
Specimen part
View SamplesWe analyzed gene expression in human peripheral blood mononuclear cells (PBMCs) from breast cancer patients, patients with benign breast abnormalities, healthy cancer-free individuals as well as patients with other types of cancer (gastrointestinal and brain cancers).
Integrating factor analysis and a transgenic mouse model to reveal a peripheral blood predictor of breast tumors.
Specimen part
View SamplesFemale MMTV/c-MYC transgenic mice expressed the c-MYC proto-oncogene or a more stable point mutation variant (T58A) of the gene under the control of the hormone-responsive MMTV long terminal repeat (LTR) in an FVB/NJ background (Jackson Laboratories, Bar Harbor, ME). The hormones released during pregnancy and lactation have been shown to enhance expression of the oncogene. Thus, the mice were maintained in a continuous breeding program. Mice were monitored twice weekly for tumor development by palpation and tumors were measured twice weekly. Once the tumors reached 3cm3 the animals were sacrificed and tissue was obtained to confirm the tumors by histological analysis. As a control, female mice of the same age and background strain were maintained in the same facility and under the same breeding conditions as their transgenic counterparts.
Integrating factor analysis and a transgenic mouse model to reveal a peripheral blood predictor of breast tumors.
Specimen part
View SamplesE2F1 has been shown to induce both proliferation and apoptosis.
An E2F1-dependent gene expression program that determines the balance between proliferation and cell death.
No sample metadata fields
View Samplesdrl expression initiates during gastrulation and condenses as a band of cells at the prospective lateral embryo margin. In late epiboly, drl:EGFP is detectable as a band of scattered EGFP-fluorescent cells; after gastrulation, drl:EGFP-positive cells coalesce at the embryo margin that then in somitogenesis break down into the anterior and posterior lateral plate with subsequent cell migrations that form the posterior vascular/hematopoietic stripes and the anterior cardiovascular and myeloid precursors.
Chamber identity programs drive early functional partitioning of the heart.
Age, Specimen part
View SamplesWe used microarrays to compare gene expression profiles between mouse mammary tumors initiated by Myc to those that have escaped Myc oncogene dependence.
Heterogeneity in MYC-induced mammary tumors contributes to escape from oncogene dependence.
Specimen part
View SamplesThe transition from pregnancy to lactation is a critical event in the survival of the newborn since all the nutrient requirements of the infant are provided by milk. While milk contains numerous components, including proteins, that aid in maintaining the health of the infant, lactose and milk fat represent the critical energy providing elements of milk. Much of the research to date on mammary epithelial differentiation has focused upon expression of milk protein genes, providing a somewhat distorted view of alveolar differentiation and secretory activation. While expression of milk protein genes increases during pregnancy and at secretory activation, the genes whose expression is more tightly regulated at this transition are those that regulate lipid biosynthesis. The sterol regulatory element binding protein (SREBP) family of transcription factors is recognized as regulating fatty acid and cholesterol biosynthesis. We propose that SREBP1 is a critical regulator of secretory activation with regard to lipid biosynthesis, in a manner that responds to diet, and that the serine/threonine protein kinase Akt influences this process, resulting in a highly efficient lipid synthetic organ that is able to support the nutritional needs of the newborn.
Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis!
No sample metadata fields
View SamplesE2F1 induces numerous genes, including transcription factors, upon activation. The transcription factors then further cooperates with E2F1 to regulate the target genes and enhance the transcriptional effect.
E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.
Cell line
View SamplesAn important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected.
Identifying significant temporal variation in time course microarray data without replicates.
No sample metadata fields
View Samples