Tumorigenic breast cancer cells characterized by high CD44 and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to conventional therapies and responsible for cancer relapse. We defined a signature expression pattern of hundreds of genes associated with CD44+/CD24-/low, mammosphere-forming cells. In a panel of patient breast tumors, this tumorigenic gene signature was found exclusively manifested in tumors of the recently identified claudin-low molecular profile subtype characterized by overexpression of many mesenchymal-associated genes, suggesting that these tumors have pre-existing higher levels of tumorigenic cells. Furthermore, when comparing the expression profiles of paired breast cancer core biopsies before versus after hormone therapy or chemotherapy, both the tumorigenic and claudin-low signatures were more active in about half of tumors after treatment, indicative of a greater enrichment of tumorigenic cells as a result of treatments targeting the bulk tumor cells.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
Sex, Specimen part, Treatment
View SamplesTumorigenic breast cancer cells characterized by CD44 expression and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to chemotherapy and therefore responsible for cancer relapse. Paired breast cancer core biopsies before and after neoadjuvant chemotherapy or lapatinib were obtained and as single cell suspensions stained using antibodies against CD24, CD44, and lineage markers, and then analyzed by flow cytometry. Mammosphere (MS) formation in culture was compared before and after treatment. Global gene expression differences between cancer cells bearing CD44+/CD24-/low cells and all other sorted cells, and between cancer MS and the primary bulk invasive cancers were analyzed. We report that CD44+/CD24-/low tumorigenic breast cancer cells were intrinsically chemoresistant chemotherapy led to increased CD44+/CD24-/low cells, increased self-renewal capacity on MS assays, and enhanced tumorigeneicity in immunocompromised SCID/Beige mice. Conversely, in patients with HER2 overexpressing tumors, the EGFR/HER2 tyrosine kinase inhibitor, lapatinib decreased CD44+/CD24-/low cells, with the majority of these patients after conventional therapy achieving pathologic complete response, a validated surrogate marker for long-term survival. Gene transcription pathways that underlie chemoresistant, MS-forming CD44+/CD24-/low cells involve genes belonging to stem cell self-renewal, Wnt signaling, and early development pathways.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
No sample metadata fields
View SamplesTumorigenic breast cancer cells characterized by CD44 expression and low or undetectable CD24 levels (CD44+/CD24-/low) may be resistant to chemotherapy and therefore responsible for cancer relapse. Paired breast cancer core biopsies before and after neoadjuvant chemotherapy or lapatinib were obtained and as single cell suspensions stained using antibodies against CD24, CD44, and lineage markers, and then analyzed by flow cytometry. Mammosphere (MS) formation in culture was compared before and after treatment. Global gene expression differences between cancer cells bearing CD44+/CD24-/low cells and all other sorted cells, and between cancer MS and the primary bulk invasive cancers were analyzed. We report that CD44+/CD24-/low tumorigenic breast cancer cells were intrinsically chemoresistant chemotherapy led to increased CD44+/CD24-/low cells, increased self-renewal capacity on MS assays, and enhanced tumorigeneicity in immunocompromised SCID/Beige mice. Conversely, in patients with HER2 overexpressing tumors, the EGFR/HER2 tyrosine kinase inhibitor, lapatinib decreased CD44+/CD24-/low cells, with the majority of these patients after conventional therapy achieving pathologic complete response, a validated surrogate marker for long-term survival. Gene transcription pathways that underlie chemoresistant, MS-forming CD44+/CD24-/low cells involve genes belonging to stem cell self-renewal, Wnt signaling, and early development pathways.
Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features.
No sample metadata fields
View SamplesPlants typically contain two different types of cell walls: a primary wall that is being deposited around all growing cells, and a secondary wall that is produced in cells with specialized functions once they have ceased to grow. In Arabidopsis, VND7 is a transcription factor that is sufficient to activate secondary cell wall synthesis. To artificially turn on the secondary cell wall synthesis, VND7 was fused to the activation domain of the herpes virus VP16 protein and the glucocorticoid receptor (GR) domain. Thus, the transgenic plants harbouring the constructs can then be treated with dexamethasone (DEX), a glucocorticoid derivative, to induce the secondary cell wall formation.
A Transcriptional and Metabolic Framework for Secondary Wall Formation in Arabidopsis.
Specimen part, Treatment
View SamplesGene expression profiling on IL-10-secreting and non-secreting murine Th1 cells, stimulated in the presence or absence of the Notch ligand Delta-like 4 (Dll4), was performed to identify transcription factors co-expressed with IL-10.
Role of Blimp-1 in programing Th effector cells into IL-10 producers.
Specimen part
View SamplesCell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic organ fusions. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.
The FRIABLE1 gene product affects cell adhesion in Arabidopsis.
Specimen part
View SamplesCaspase-8 is a cystein protease involved in regulating apoptosis. The function of caspase-8 was studied in the intestinal epithelium, using mice with an intestinal epithelial cell specific deletion of caspase-8.
Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis.
Specimen part
View SamplesEmbryonal Tumors with Multilayered Rosettes (ETMRs) have recently been described as a new entity of rare pediatric brain tumors with fatal outcome. We show here that ETMRs are characterized by a parallel activation of Shh- and Wnt-signaling. Co-activation of these pathways in murine neural precursors is sufficient to induce ETMR-like tumors in vivo that resemble their human counterparts based on histology and global gene expression analyses, and point to apical radial glia cells as the possible tumor cell-of-origin. Overexpression of LIN28A, which is a hallmark of human ETMRs, augments Sonic Hedgehog (Shh)- and Wnt-signaling in these precursor cells through downregulation of let7-miRNA, and LIN28A/let7a interaction with the Shh-pathway was detected at the level of Gli mRNA. Finally, human ETMR cells that were transplanted into immunocompromised host mice were responsive to the Shh-inhibitor Arsenic trioxide (ATO). Our findings provide a novel mouse model to study this tumor type, demonstrate the driving role of Wnt- and Shh-activation in the growth of ETMRs and propose downstream inhibition of Shh-signaling as a therapeutic option for patients with ETMRs.
A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors.
Specimen part
View SamplesBackground: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal findings: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched MSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both MSCs and FBs. Further, MSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusion: Our findings suggest that stromal stem cells including adipose-derived MSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between MSCs and FBs. Overall design: A total of 91 samples were analyzed by multiplex RNA-seq. Samples represented replicates from two patients, two cell types and three differentiation protocols, as indicated by the sample annotation. 5 barcodes were unused, but the corresponding FASTQ files are included for completeness.
RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.
Specimen part, Treatment, Subject
View SamplesBackground: Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems. We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods: Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freunds adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results: Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions: These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. Key words: prenatal alcohol exposure (PAE), ethanol, inflammation, arthritis, gene expression, rat.
Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain.
Sex, Specimen part, Disease
View Samples