Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
No sample metadata fields
View SamplesIn this study we could show that the treatment of primary murine prostate cancer(PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma ofmouse prostate) model with the histone deacetylase inhibitor (HDI) valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 as a family member of the highly conserved Dtype cyclins in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. The observed cyclin D2 re-expression in cancer cells is activated by an increase of histone acetylation in the promoter region of the cyclin D2 gene and might be the underlying molecular mechanism of the inhibition of proliferation of cancer cells after VPA treatment. Taken together, our results confirm VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression.
Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2.
Specimen part
View SamplesSince bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.
Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.
Specimen part, Cell line
View SamplesPancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients.
CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.
Sex, Specimen part, Treatment
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesHuman transcriptome array analysis of human cord blood mononuclear leokocytes from neonates exposed to histological chorioamnionitis and compared with healthy neonates
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates.
Specimen part
View SamplesWe infected Mouse Embryonic Fibroblast and cultured them in anchorage independent conditions to study tranformation induced by the bacterium. We cultured these transformed cells multiple rounds in the presence of Ciprofloxacin to remove intracellular Salmonella after transformation occured. By doing RNA sequencing we indentified genes of which expression was altered upon infection. This helps us to understand how Salmonella alters the host cell, resulting in transformation Overall design: We Cultered two biological duplicates of infected MEF cells, which we compared to a non transformed MEF control sample
Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma.
No sample metadata fields
View SamplesPurpose: We applied RNA sequencing technology for high-throughput analysis of transcriptional changes within human MM cell lines JJN3 and U266 due to individual and combination drug treatment. Methods: JJN3 and U266 cells were treated with pan-HDACi panbobinostat, DNMTi 5-Azacytidine, panobinostat+5-Azacytidine or NMP for 4h or 24h in triplicate and transcriptional changes assessed by RNAseq using Illumina HiSeq platform. Specifically, JJN3 cells were treated with 10nM panobinostat, 2.5µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. U266 cells were treated with 10nM panobinostat, 10µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. Results: We report unique and overlapping transcriptional signatures that lead to the induction of apoptosis in human MM cell lines in a cell-specific manner due to individual or combination treatments. Conclusions: A detailed analysis of differential transcriptional events in human MM cell lines due to HDACi, DNMTi, HDACi+DNMTi and NMP appear to define the molecular events leading to apoptosis and drug mechanism of action. Overall design: We tested triplicate experiments at 4h and 24hr time points in JJN3 and U266 cell lines against vehicle control treated cells.
The drug vehicle and solvent N-methylpyrrolidone is an immunomodulator and antimyeloma compound.
No sample metadata fields
View SamplesLeaves and panicles from recurrent parent KMR3 and a high yielding KMR3-O.rufipogon introgression line were used
Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.
Specimen part
View SamplesPurpose: RNA seq analysis were to compare and contrast the gene expression profile involved in the dedifferentiation of db/db islets in type 2 diabetes Methods: Islets of wild type, db/+ and db/db were purified using perfusion from 12 week old mice and RNA were isolated. Islated RNA were used in RNA seq to understand the expression pattern Results: Using an optimized data analysis workflow, we mapped about 10 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts WT, db/+ and db/db mice islets with TopHat workflow. Hierarchical clustering of differentially expressed genes uncovered there role in type 2 diabetes. Data analysis with TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: We characterised and identified genes involved in dedifferentiation of islets. Overall design: Islets of mRNA 12 weeks old wild type (WT), db/+ and db/db mice were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500 platform.
RNA-Seq Analysis of Islets to Characterise the Dedifferentiation in Type 2 Diabetes Model Mice db/db.
Age, Specimen part, Cell line, Subject
View Samples