HnRNPLL was identified as a critical regulator of CD45 alternative splicing in a lentiviral shRNA screen. RNAi-mediated depletion of hnRNPLL eliminated the activation-induced induced transition from the CD45RA to the CD45RO isoform. HnRNPLL is induced during the process of T cell activation, raising the possibility that it regulates a broad program of alternative splicing in activated T cells. To test this possibility and to identify additional potential targets of hnRNPLL, we performed exon array analysis on RNA isolated from five cellular conditions: 1) activated peripheral CD4+ T cells, 2) peripheral CD4+ T cells infected with a control shRNA directed against GFP, 3) peripheral CD4+ T infected with an shRNA directed against hnRNPLL, 4) nave cord blood CD4+ T cells, and 5) cord blood CD4+ T cells that had been activated with anti-CD3 and anti-CD28 for 24 hours. The RNA was hybridized to Affymetrix human exon arrays and the hybridization signals were analyzed with XRAYTM software (Biotique). Using stringent filters for non-expressed probesets, we identified 132 genes that showed significant alternative exon usage (p<0.01) in response to hnRNPLL knockdown, but not in response to shGFP infection. Of these 132 genes, 36 also showed significant alternative exon usage in response to activation of cord blood cells, which results in an approximate 5-fold increase in hnRNPLL expression. We thus conclude that induction of hnRNPLL represents a mechanism by which cells can rapidly shift their transcriptomes during the process of T cell activation.
Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL.
No sample metadata fields
View SamplesIn order to identify genes with differential gene expression or alternative splicing between the groups LL-sh4, uninfected, and shGFP we study 6 hybridizations on the Human Exon 1.0 ST array using mixed model analysis of variance. 842 genes with significant gene expression differences between the groups and 1118 genes with significant exon-group interaction (a symptom of alternative splicing) were found, including 192 genes with both gene and possible splicing differences (p<0.01). Contingency table analysis of the set of studied genes and a dataset of known pathways and gene classifications revealed that the set of alternatively spliced and expressed genes were found to be significantly over-represented in groups of the GOMolFn, GOProcess, GOCellLoc, and Pathway classes (p<0.01).
Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL.
No sample metadata fields
View SamplesIn order to identify genes with differential gene expression or alternative splicing between the groups naive and activated we study 4 hybridizations on the Human Exon 1.0 ST array using mixed model analysis of variance. 1904 genes with significant gene expression differences between the groups and 1603 genes with significant exon-group interaction (a symptom of alternative splicing) were found, including 427 genes with both gene and possible splicing differences (p<0.01). Contingency table analysis of the set of studied genes and a dataset of known pathways and gene classifications revealed that the set of alternatively spliced and expressed genes were found to be significantly over-represented in groups of the GOMolFn, GOProcess, GOCellLoc, and Pathway classes (p<0.01).
Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL.
No sample metadata fields
View SamplesOocyte quality is a well- established determinant of embryonic fate. However, the molecular participants and biological markers that affect and predict adequate embryonic development are largely elusive. We have previously reported that oocyte- directed Connexin 43 (Cx43) depletion leads to embryo implantation defects, although both the morphology of the oocyte and processes presiding embryo implantation appear to undergo normally. In the context of previous data determining Cx43 indispensability to oocyte and embryonic development, we show here that the timing of Cx43 depletion from the oocyte and the ovarian follicle is crucial in determining the severity of subsequent embryonic defects. Specifically, we show that the implantation defects of blastocysts resulting from oocyte- directed Cx43- depleted follicles (depletion occurs at day 3 postnatal), is not due to maternal luteal insufficiency but rather depends solely on the defective blastocysts. Gene expression microarray analysis revealed global defects in the expression of ribosomal proteins, translation initiation factors and other genes associated with cellular biosynthetic and metabolic processes in these defective oocytes and specifically blastocysts. We therefore propose that timely expression of Cx43 in the oocyte and ovarian follicles is a major determinant of oocyte developmental competence, by determining the ability of the resulting blastocyst to facilitate biomass expansion and undergo adequate embryo implantation
Blastocyst implantation failure relates to impaired translational machinery gene expression.
Specimen part
View SamplesMany thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
No sample metadata fields
View SamplesSince bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.
Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.
Specimen part, Cell line
View SamplesPancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients.
CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.
Sex, Specimen part, Treatment
View SamplesIn this study we could show that the treatment of primary murine prostate cancer(PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma ofmouse prostate) model with the histone deacetylase inhibitor (HDI) valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 as a family member of the highly conserved Dtype cyclins in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. The observed cyclin D2 re-expression in cancer cells is activated by an increase of histone acetylation in the promoter region of the cyclin D2 gene and might be the underlying molecular mechanism of the inhibition of proliferation of cancer cells after VPA treatment. Taken together, our results confirm VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression.
Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2.
Specimen part
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesHuman transcriptome array analysis of human cord blood mononuclear leokocytes from neonates exposed to histological chorioamnionitis and compared with healthy neonates
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates.
Specimen part
View Samples