Leaves and panicles from recurrent parent KMR3 and a high yielding KMR3-O.rufipogon introgression line were used
Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.
Specimen part
View SamplesPurpose: RNA seq analysis were to compare and contrast the gene expression profile involved in the dedifferentiation of db/db islets in type 2 diabetes Methods: Islets of wild type, db/+ and db/db were purified using perfusion from 12 week old mice and RNA were isolated. Islated RNA were used in RNA seq to understand the expression pattern Results: Using an optimized data analysis workflow, we mapped about 10 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts WT, db/+ and db/db mice islets with TopHat workflow. Hierarchical clustering of differentially expressed genes uncovered there role in type 2 diabetes. Data analysis with TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: We characterised and identified genes involved in dedifferentiation of islets. Overall design: Islets of mRNA 12 weeks old wild type (WT), db/+ and db/db mice were generated by deep sequencing, in triplicate, using Illumina Hiseq 2500 platform.
RNA-Seq Analysis of Islets to Characterise the Dedifferentiation in Type 2 Diabetes Model Mice db/db.
Age, Specimen part, Cell line, Subject
View SamplesSenescence is a developmental process and chlorophyll is an indicator of leaf senescene. In plants cytokinin plays a role in delaying leaf senescence. Chlorophyll degradation is tightly regulated during senescence and cytokinin might interplay in the chrorophyll degradation pathway to regulate leaf greening.
Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.
Specimen part, Cell line, Treatment
View SamplesThousands of enhancers are characterized in the human genome, yet few have been shown important in cancer. Inhibiting oncokinases, such as EGFR, ALK, HER2, and BRAF, is a mainstay of current cancer therapy but is hindered by innate drug resistance mediated by upregulation of the HGF receptor, MET. The mechanisms mediating such genomic responses to targeted therapy are unknown. Here, we identify lineage-specific MET enhancers for multiple common tumor types, including a melanoma lineage-specific MET enhancer that displays inducible chromatin looping and MET gene induction upon BRAF inhibition. Epigenomic analysis demonstrated that the melanocyte-specific transcription factor, MITF, mediates this enhancer function. Targeted genomic deletion (<7bp) of the MITF motif within the MET enhancer suppressed inducible chromatin looping and innate drug resistance, while maintaining MITF-dependent, inhibitor-induced melanoma cell differentiation. Epigenomic analysis can thus guide functional disruption of regulatory DNA to decouple pro- and anti-oncogenic functions of tumor lineage-enriched transcription factors mediating innate resistance to oncokinase therapy.
Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition.
Cell line
View SamplesHere we studied the epigenetic regulation of the naïve CD4+ T-cell activation response among children with IgE-mediated food allergy. Using integrated DNA methylation and transcriptomic profiling, we found that food allergy in infancy is associated with dysregulation of T-cell activation genes. Reduced expression of cell cycle related targets of the E2F and MYC transcription factor networks, and remodeling of DNA methylation at metabolic (RPTOR, PIK3D, MAPK1, FOXO1) and inflammatory genes (IL1R, IL18RAP, CD82) were associated with poorer T-lymphoproliferative responses in infancy after polyclonal activation of the T-cell receptor. Overall design: mRNA sequencing of naïve CD4+ T-cells under two conditions (anti-CD3+CD28 activated, or quiescent) at two ages (baseline (12months) and followup (2 or 4 years)) in allergic and non-allergic children.
Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy.
Sex, Subject
View SamplesMany thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
No sample metadata fields
View SamplesPseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (??mito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, qPCR and western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), while DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: ??mito depolarized, Cacyto increased and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control ??mito, Ca2+ release from the ER and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin, staurosporine but activates Bax- and Bak-independent apoptosis in response to C12. Overall design: Gene expression profiling of mouse embryo fibroblasts from WT and Bax/Bak double knock-out mice (C12 responsive and non-reponsive cell lines).
Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N-(3-Oxododecanoyl)-homoserine lactone.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development.
Specimen part
View SamplesIn immune responses, activated T cells migrate to B cell follicles and develop to T follicular helper (Tfh) cells, a new subset of CD4+ T cells specialized in providing help to B lymphocytes in the induction of germinal centers 1-3. Although Bcl6 has been shown to be essential in Tfh cell function, it may not regulate the initial migration of T cells 4 or the induction of Tfh program as exampled by CXCR5 upregulation 5. Here, we show that the Achaete-Scute homologue 2 (Ascl2) gene that encodes a basic helix-loop-helix (bHLH) transcription factor 6, is selectively upregulated in its expression in Tfh cells. Ectopic expression of Ascl2 uniquely upregulates CXCR5 but not Bcl6 and downregulates CCR7 expression in T cells in vitro and accelerates T cell migration to the follicles and Tfh cell development in vivo. Combined transcriptome profiling and genome-wide occupancy analysis indicate that Ascl2 directly regulates Tfh-related genes while inhibits expression of Th1 and Th17 genes. Acute deletion of Ascl2 as well as blockade of its function with the Id3 protein in peripheral CD4+ T cells results in a failure in Tfh cell development and the germinal center response. Conversely, mutation of Id3, known to cause antibody-mediated autoimmunity, greatly enhances Tfh cell generation. Thus, Ascl2 critically and directly initiates Tfh cell development.
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development.
Specimen part
View Samples