Regulation of homeostasis and development of cardiac muscle tissues is controlled by a core set of transcription factors. The MEF2 family plays a critical role in these processes.
Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors.
Specimen part
View SamplesIn this study, we have identified MEF2A-sensitive genes in atrial and ventricular chambers of the adult heart. MEF2A is a member of the myocyte enhancer factor 2 (MEF2) family of transcription factors. MEF2 proteins are expressed in skeletal and cardiac muscle tissues and are conserved across many mammalian species, but the gene programs regulated by MEF2A in adult cardiac chambers are largely unknown. We compared gene expression profiles between WT and Mef2a knockout atria and ventricles from adult mice, and the results identified distinct and overlapping sets of genes sensitive to the loss of MEF2A in the adult heart.
The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart.
Specimen part
View SamplesThe spliceosome is a dynamic RNA-protein complex that executes pre-mRNA splicing and is composed of five core small nuclear ribonucleoprotein particles (U1, U2, U4/5/6 snRNP) and >150 additional proteins specific for each snRNP. We report a circadian role for Pre-mRNA Processing factor 4 (PRP4), a conserved component of the spliceosomal U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) complex. We broadly hypothesized that downregulation of prp4 led to the aberrant splicing of one or many of the core clock transcripts. To identify these splicing events in an unbiased way, we performed RNA-Sequencing (RNA-Seq) analysis. We reasoned that we could have a more targeted approach if we could zoom in on the overlapping splicing changes that would be driven by the knockdown of at least two different tri-snRNP components. Because the pan-neuronal knockdown of all tri-snRNP components tested in our study led to lethality, we decided to utilize an alternative broad driver. For that purpose, we selected a strong eye-specific Glass Multiple Promoter driver (GMR-Gal4). Because most of the signal from head lysates comes directly from the eye tissue and because the core splicing factors are ubiquitously expressed, GMR-specific downregulation of prp4 and prp8 promised to be a viable alternative to the pan-neuronal knockdown. We examined changes in both the total transcript levels and splicing events upon prp4 knockdown in the eye. The overall gene expression seemed to be dramatically influenced by prp4 downregulation (433 DOWN, 310 UP at FDR < 0.05). Despite the fact that PRP4 is a component of the core spliceosome that is required for constitutive exon splicing, we did not detect dramatic effects on global splicing. Only 45 genes exhibited differential alternate splicing upon prp4 downregulation at FDR < 0.05). Overall design: 3 samples with 5 replicates each were analyzed using Illumina Next-Generation Sequencing (NextSeq 500).
Spliceosome factors target timeless (<i>tim</i>) mRNA to control clock protein accumulation and circadian behavior in Drosophila.
Specimen part, Subject
View SamplesRNAi mediated suppression of MADS29 severely affects seed set; the surviving seeds are smaller in size with reduced grain filling, abnormal starch grains and aberrant embryo development. To identify the affected pathways due to suppression of this transcription factor in the transgenic seeds, transcriptome analysis using microarray was carried out.
Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis.
Specimen part
View SamplesOverexpression of MADS29 results in severely dwarfed phenotype, resulting from a shift in auxin-cytokinin ratio in favor of cytokinins. To see the extent of change in gene expression in the leaves of the transgenic plants, whole genome transcript analysis was carried out using microarray.
Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis.
Specimen part
View SamplesWe used microarrays to examine gene expression levels from 95 unrelated CEPH-Utah individuals 0, 2 or 6 hours after treatment with 10Gy of ionizing radiation.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesWe used microarrays to examine gene expression levels from 131 unrelated CEPH-Utah grandparents with either DMSO or tunicamycin.
Stress-induced changes in gene interactions in human cells.
Cell line, Treatment, Time
View SamplesWe used Affymetrix microarray analyses of thirty-two individual Vitis vinifera cv. Cabernet Sauvignon berries sampled from two clusters at fifty-percent ripening initiation. By delineating four developmental stages of ripening initiation, we demonstrate that color is a statistically significant indicator of transcriptional state during ripening initiation. We report on clustered gene expression patterns which were mined for genes annotated with signal transduction functions in order to advance regulatory network modeling of ripening initiation in grape berries.
Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster.
No sample metadata fields
View SamplesDifferentiation and maintenance of cardiac muscle is a complex biological process. MEF2D appears to play an important role in the regulation of cardiomyocyte homeostasis.
MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro.
Age, Specimen part
View SamplesThe accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in the condition called ER stress which induces the unfolded protein response (UPR) which is a complex cellular process that includes changes in expression of many genes. Failure to restore homeostasis in the ER is associated with human diseases. To identify the underlying changes in gene expression in response to ER stress, we induced ER stress in human B-cells and then measured gene expression at 10 time-points. We followed up those results by studying cells from 60 unrelated people. We rediscovered genes that were known to play a role in ER stress response and uncovered several thousand genes that are not known to be involved. Two of these are VLDLR and INHBE which showed significant increase in expression following ER stress in B-cells and
Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells.
Cell line, Subject, Time
View Samples