Hepatic lipid accumulation is an important complication of obesity linked to risk for type 2 diabetes. To identify novel transcriptional changes in human liver which could contribute to hepatic lipid accumulation and associated insulin resistance and type 2 diabetes (DM2), we evaluated gene expression and gene set enrichment in surgical liver biopsies from 13 obese (9 with DM2) and 5 control subjects, obtained in the fasting state at the time of elective abdominal surgery for obesity or cholecystectomy. RNA was isolated for cRNA preparation and hybridized to Affymetrix U133A microarrays.
Thyroid hormone-related regulation of gene expression in human fatty liver.
Sex, Age
View SamplesPsoriasin (S100A7) has been shown to be highly expressed in invasive estrogen receptor negative breast cancers. Expression of S100A7 in human breast tumors represents a poor prognostic marker and correlates with lymphocyte infiltration in high-grade morphology. Recent studies have shown that S100A7 downregulation in ER- cells lines inhibits tumor growth in in vivo mouse model systems. However, not much is known about its mechanisms in regulating breast cancers.
S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways.
Cell line
View SamplesMycobacteria-induced apoptosis of macrophages plays an important role in modulation of the host immune response involving TNF-alpha as major cytokine. The underlying mechanisms are still ill-defined. Here, we show for the first time that methylglyoxal (MG) and AGEs levels were elevated during mycobacterial infection of macrophages and that their increased levels mediated mycobacteria-induced apoptotic and immune response of macrophages. Moreover, we show that high levels of AGEs were formed at the sites of pulmonary tuberculosis. This observation represents the first evidence of the potential involvement of AGEs in tuberculosis and in infectious diseases in general. Global gene expression profiling of MG-treated macrophages reveals diversified potential roles of MG in cellular processes, including apoptosis, immune response, and growth regulation. The results of this study provide new insights into intervention strategies to develop therapeutic tools against infectious diseases in which MG and AGE production plays critical roles.
Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.
No sample metadata fields
View SamplesFibrocytes (fibroblastic leukocytes) are recently identified as unique hematopoietic cells with features of both macrophages and fibroblasts. Fibrocytes are known to contribute to the remodeling or fibrosis of various injured tissues. However, their role in viral infection is not fully understood. Here we show that differentiated fibrocytes are phenotypically distinguishable from macrophages but can be infected with HIV-1. Importantly, fibrocytes exhibited persistently infected cell-like phenotypes, the degree of which was more apparent than macrophages. The infected fibrocytes produced replication-competent HIV-1, but expressed HIV-1 mRNA at low levels and strongly resisted HIV-1-induced cell death, which enabled them to support an extremely long-term HIV-1 production at low but steady levels. More importantly, our results suggested that fibrocytes were susceptible to HIV-1 regardless of their differentiation state, in contrast to the fact that monocytes become susceptible to HIV-1 after the differentiation into macrophages. Our findings indicate that fibrocytes are the previously unreported HIV-1 host cells, and suggest the importance of considering fibrocytes as one of long-lived persistently infected cells for curing HIV-1.
Fibrocytes Differ from Macrophages but Can Be Infected with HIV-1.
Specimen part, Time
View SamplesAlternative mRNA splicing provides transcript diversity and has been proposed to contribute to several human diseases. Here, we demonstrate that expression of genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. To determine the metabolic impact of reduced splicing factor expression, we further evaluated the splicing factor, SFRS10, identified as down-regulated in obese human liver and skeletal muscle and in high fat fed rodents. siRNA-mediated reductions in SFRS10 expression induced lipogenesis and lipid accumulation in cultured hepatocytes. Moreover, SFRS10 heterozygous mice have both increased hepatic lipogenic gene expression and hypertriglyceridemia. We also demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10, with reduced SFRS10 levels favoring the lipogenic isoform of LPIN1. Importantly, LPIN1-specific siRNA abolished the lipogenic effects of decreased SFRS10 expression. Together, our results indicate reduced expression of SFRS10 alters LPIN1 splicing and induces lipogenesis, demonstrating that reduced splicing factor expression observed in human tissues may contribute to metabolic phenotypes associated with human obesity.
Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis.
Age, Subject
View SamplesStatus Epilepticus (SE) is an abnormally prolonged seizure that results from either a failure of mechanisms that terminate seizures or from initiating mechanisms that inherently lead to prolonged seizures.
Induction of Type 2 Iodothyronine Deiodinase After Status Epilepticus Modifies Hippocampal Gene Expression in Male Mice.
Specimen part
View SamplesWe examined the adherence-mediated signaling of meningococci to human cells by comparing gene expression profiles of primary human umbilical vein endothelial cells (HUVEC) infected by piliated and adherent wild-type (WT), frpC/frpA-deficient mutant, or the non-adherent (pilD) N. meningitidis MC58 bacteria defective in production of the type IV pilus, respectively. Surprisingly, no significant difference was found between the transcriptomes of HUVECs infected by bacteria producing, or not the RTX FrpC and FrpA proteins, thus failing to provide any hints on their biological activity. In contrast, pili-mediated adhesion of meningococci resulted in alterations of expression levels of human genes known to regulate apoptosis, cell proliferation, inflammatory response or adhesion. In particular, genes for signaling pathway proteins involved in early embryonic development, such as transforming growth factor- (TGF-)/Smad, Wnt/-catenin, and Notch/Jagged were found to be upregulated upon adhesion of N. meningitidis together with genes for a number of transcription factors. This reveals that adhering piliated meningocci manipulate signaling pathways controlling human cell proliferation, survival and defense mechanisms, while establishing a commensal relationship with the host.
Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells.
Specimen part
View SamplesLoss of KChIP2 during cardiac stress has been suggested to have a transcriptional impact on cardiac ion channels contributing to maladaptive electrical remodeling. Therefore, we tested the consequence of KChIP2 loss, in the absence of cardiac stress, by treating cultured neonatal rat ventricular myocytes with shRNA for KChIP2 and subsequently performed whole-transcriptome microarray analysis to identify gene changes.
KChIP2 is a core transcriptional regulator of cardiac excitability.
Specimen part
View SamplesWe report a novel modular pipeline (iMir) for comprehensive analysis of miRNA-Seq data, from linker removal and sequence quality check to differential expression and biological target prediction, integrating multiple open source modules and resources linker together in an automated flow. Overall design: Development of an integrated pipeline (iMir) for comprehensive analysis of miRNA-Seq experiment.
iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.
Specimen part, Cell line, Subject
View SamplesEstrogens play an important role in breast cancer (BC) development and progression, where the two isoforms of the estrogen receptor (ERa and ERß) are generally co-expressed and mediate the effects of these hormones in cancer cells. ERß has been suggested to exert an antagonist role toward the oncogenic activities of ERa, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERß in cancer cells. We described previously the ERß and ERa interactomes of BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERa and ERß pathways. Guided by these findings, we investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared. Overall design: We investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared.
Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells.
No sample metadata fields
View Samples