RNA expression in WT and jhd2? cells in various nutritional sources Overall design: Strand-specific total RNA was sequenced (Illumina stranded TruSeq, with dUTP second strand-incorporation) from wildtype and mutants cells, in biological replicates, normalized by RNA spike-in controls
Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation.
Cell line, Subject
View SamplesArabidopsis ABA hpersensitive germination2-1 mutant shows an enhanced sensitivity to ABA. This mutant has higher levels of endogenous ABA. This mutant also exhibited SA hypersensitivity and dwarf phenotype. Regarding SA hypersensitivity, ahg2-1 exhibits higher endogenous SA level and an enhanced resistance to pathogenic bacteria. Since AHG2 encodes the Arabidopsis polyA specific ribonuclease that is involved in mRNA degradation, presumably abnormal accumulation of some mRNAs confers the unique phenotype. Transcriptome analyses are expected to offer information on the target of AHG2. In order to eliminate secondary effects of higher levels of ABA and SA, ahg2-1abi1-1 and ahg2-1sid2-2 double mutants were also examined. The transcriptome data revealed that; ahg2-1 confers unique gene expression profiles, ABA and SA affect the expression profiles of this mutant but many genes are independent of those plant hormone responses. Comparing with expression profiles of other mutants indicated that the ahg2-1 might affect mitochondrial function.
ABA hypersensitive germination2-1 causes the activation of both abscisic acid and salicylic acid responses in Arabidopsis.
No sample metadata fields
View SamplesWe sequenced mRNA from individual stormal cells (Macrophages, Monocytes, and Neutrophils) and tumor epithelial cells from KrasG12dD; p53-/- murine lung cancer model and WT control mouse to compare gene expressio profiles of lung cancer stroma and tumor cells to their counterparts of WT lugns. The tumor was generated by injecting HKP1 lung cancer cell line, which was driven by KrasG12D activation and loss of p53, via tail vein. The cells were sorted by their specific surface markers at day 20-25 after orthortopic lung cancer formation. Overall design: Examination of mRNA levels in individual stormal cells and tumor cells from tumor lungs compared to their counterparts from WT lungs
Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model.
No sample metadata fields
View SamplesTSLP pathway blockade is a potential strategy for asthma treatment, as TSLP modulates cytokine production by mast cells and regulates the activation of dendritic cells (DCs), which prime the differentiation of nave T cells into inflammatory Th2 cells. To assess the effect of TSLPR blockade on the development of allergic inflammation and bronchoconstriction in Cynomolgus monkeys after Ascaris suum allergen challenge. Antibodies against human TSLPR were generated and confirmed to be cross-reactive to cynomolgus. Animals were dosed weekly with either vehicle (n=8) or TSLPR HuMAb (n=8) for 6 weeks and their responses to A.Suum challenge at baseline, week 2 and week 6 were assessed. Antibody-treated animals showed reduced bronchoalveolar lavage (BAL) eosinophil counts (p=0.04), reduced lung resistance (RL) area under the curve (p=0.04), and reduced IL-13 cytokine levels in BAL fluid (p=0.03) in response to challenge at 6 weeks compared to vehicle-treated animals. To understand the molecular changes underlying these differences, BAL fluid samples pre- and post-challenge were profiled using microarrays. Genes up-regulated by allergen challenge overlapped strongly with 11 genes up-regulated in DCs when stimulated by TSLP (TSLP-DC signature). The number of genes differentially expressed in response to challenge was reduced in aTSLPR-treated animals after 6 weeks relative to vehicle-treated animals. Expression of the TSLP-DC gene signature was also significantly reduced in aTSLPR-treated animals (p = 0.05). These results demonstrate promising efficacy for TSLPR blockade in an allergen challenge model where TSLP activation of DCs may play a key role.
Thymic stromal lymphopoietin receptor blockade reduces allergic inflammation in a cynomolgus monkey model of asthma.
Disease, Subject, Time
View SamplesLung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor “activated/reprogrammed” stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM)-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils) identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN), chemokine (C-C motif) ligand 7 (CCL7) and thrombospondin 1 (TSP1) were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value. Overall design: We sorted pure populations of the immature monocytic myeloid cells (IMMCs), neutrophils (Neu), and epithelial cells (Epi) from tumors and adjacent lung tissues of stage I-III lung adenocarcinoma patients. RNA samples (totally 17 samples) were sequenced: from tumor IMMC (n=3), Neu (n=2), Epi (n=2); from adjacent lung IMMC (n=3), Neu (n=4), Epi (n=3).
Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.
No sample metadata fields
View SamplesStore operated calcium entry (SOCE) downstream of T cell receptor (TCR) activation in T lymphocytes has been shown to be mediated mainly through the Calcium Release Activated Calcium (CRAC) channel. Here, we compared the effects of a novel, potent and selective CRAC inhibitor, 2,6-Difluoro-N-{5-[4-methyl-1-(5-methyl-thiazol-2-yl)-1,2,5,6-tetrahydro-pyridin-3-yl]-pyrazin-2-yl}-benzamide (RO2959), on T cell effector functions with that of a previously reported CRAC channel inhibitor, YM-58483, and a calcineurin inhibitor Cyclosporin A (CsA). Using both electrophysiological and calcium-based fluorescence measurements, we showed that RO2959 is a potent SOCE inhibitor that blocked an IP3-dependent current in CRAC-expressing RBL-2H3 cells and CHO cells stably expressing human Orai1 and Stim1, as well as SOCE in human primary CD4+ T cells triggered by either TCR stimulation or thapsigargin treatment. Furthermore, we demonstrated that RO2959 completely inhibited cytokine production as well as T cell proliferation mediated by TCR stimulation or MLR (Mixed Lymphocyte Reaction). Lastly, we showed by gene expression array analysis that RO2959 potently blocked TCR triggered gene expression and T cell functional pathways similar to CsA and FK506. Thus, both from a functional and transcriptional level, our data provide evidence that RO2959 is a novel and selective CRAC inhibitor that potently inhibits human T cell functions.
Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions.
Specimen part, Treatment, Subject
View SamplesEffector CD8+ T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF- and TNF-. We investigated the difference between CXCR1+ and CXCR1- subsets of human effector CD27-CD28-CD8+ T cells. Both subsets similarly expressed cytolytic molecules and exerted substantial cytolytic activity, whereas only the CXCR1- subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1+ subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1- subset and that of pro-apoptotic DAPK1 in the CXCR1+ subset. The IL-2 producers were more frequently found in the IL-7R+ subset of the CXCR1- effector CD8+ T cells than in the IL-7R- subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1- subset. The present study has highlighted a novel subset of effector CD8+ T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8+ T cells.
Functional heterogeneity of human effector CD8+ T cells.
Sex, Specimen part
View SamplesIn depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination.
In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
Specimen part, Disease, Time
View SamplesIn response to bacterial infection, early transcriptional re-programming occurs in the host plant.
Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
Specimen part
View SamplesIn response to WRKY40 and WRKY60 perturbation (and high light stress), significant transcriptional re-programming occurs particularly for genes encoding stress responsive mitochondrial and choloplast proteins.
AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins.
Specimen part, Treatment
View Samples