We reprogrammed human CD34+ cells from cord blood using a lentiviral vector encoding OCT4, SOX2 and KLF4.We collected RNA from parental CD34+ cells (3samples), reprogramming timepoints (9 timepoints), iPS clones derived from this experiment (6 clones), and human ES cell lines (9 samples). All samples were sequenced at 100bp reads. Overall design: Endogenous retroelement expression during reprogramming
Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency.
No sample metadata fields
View SamplesGene transfer into HSCs by gammaretroviral vectors (RV) is an effective treatment for inherited blood disorders, although potentially limited by the risk of insertional mutagenesis. We evaluated the genomic impact of RV integration in T-lymphocytes from adenosine deaminase (ADA)-Severe combined immunodeficiency (SCID) patients 10 to 30 months after infusion of autologous, genetically-corrected CD34+ cells. Expression profiling on ex vivo T-cell bulk population revealed no difference with respect to healthy controls. To assess the effect of vector integration on gene expression at the single cell level, primary T-cell clones were isolated from two patients. T-cell clones harboured either one or two vector copies per cell and displayed partial to full correction of ADA expression, purine metabolism and TCR-driven functions. Analysis of retroviral integration sites (RIS) indicated a high diversity in T-cell origin, consistent with the polyclonal TCR-Vbeta repertoire. Quantitative transcript analysis of 120 genes within a 200kb-window around RIS showed modest (2.8- to 5.2-fold) disregulation of 5.8% genes in 18.6% of the T-cell clones compared to controls. Nonetheless, affected clones maintained a stable phenotype and normal functions in vitro. These results confirm that RV-mediated gene transfer for ADA-SCID is safe, and provide crucial information for the development of future gene therapy protocols.
Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy.
Specimen part
View SamplesTumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Immuno-regulatory activity of both tumor-induced and BM-derived MDSCs (by GM-CSF and IL-6 treatment) was entirely dependent on C/EBP transcription factor (TF), a key component of the emergency myelopoiesis triggered by stress and inflammation. We used miR expression analysis to identify miRs which could drive MDSC recruitment/generation/activity by modulating specific TFs and pathway. In particular, we identified a miR signature of 79 miR differentially expressed between not suppressive CD11b+ cells and CD11b+ isolated from tumor mass and spleen of tumor-bearing mice. Moreover on the same samples we profiled gene expression with Affymetrix microarrays to perform an integrated analysis of mirna and gene expression.
miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.
Specimen part, Disease, Disease stage, Cell line
View SamplesTumor progression is accompanied by an altered myelopoiesis that causes the accumulation of cells inhibiting anti-tumor T lymphocytes. We previously reported that immunosuppressive cells can be generated in vitro from bone marrow cells (BM) after four days GM-CSF and IL-6 treatment. Here, we describe that miR-142-3p down-regulation directs macrophage differentiation and determines the acquisition of their immunosuppressive function in cancer. Enforced miR over-expression impaired monocyte to macrophage transition both in vitro and in vivo. Conversely, forced miR down-regulation promoted the generation of immunosuppressive macrophages even during G-CSF-induced granulocytic differentiation. To identify how miR-142-3p regulates MDSC generation and activity, we analyze the gene expression of BM cultures transfected with either CTRL- or miR 142-3p mimic oligo -transfected before four days GM-CSF and IL-6 treatment.
miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.
Specimen part, Treatment
View SamplesWe devised a novel insertional mutagenesis approach based on lentiviral vectors to induce hepatocellular carcinoma in three mouse models and identified four novel cancer initiating genes. Two genes are the well characterized Braf and Sos1, while the other two are Fign, encoding an AAA ATPase whose functions are poorly understood, and the complex Dlk1-Dio3 imprinted region which has been recently implicated in cancer and stemness. Activation of Fign or Braf and upregulation of the Dlk1-Dio3 imprinted region are functionally interconnected and may altogether control cell transformation, stemness and energy metabolism. Moreover, all the genes identified play a relevant role in human hepatocarcinogenesis as their expression levels and/or transcriptional signatures induced by their deregulation predict a different clinical outcome in hepatocellular carcinoma patients. These series consists of mRNA expression microarray data (The GeneChip Mouse Gene 1.0 ST Array, Affymetrix) from 8 non-tumoral liver and 21 hepatocellular carcinoma induced by insertional mutagenesis.
Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells.
Specimen part, Cell line, Treatment
View SamplesIn acute myeloid leukemia (AML), leukemia stem cells (LSCs) play a central role in disease progression and recurrence due to their intrinsic capacity for self-renewal and chemotherapy resistance. Whereas epigenetic regulation balances normal blood stem cell self-renewal and fate decisions, mutation and dysregulation of epigenetic modifiers are now considered fundamental to leukemia initiation and progression. Alterations in miRNA function represent a non-canonical epigenetic mechanism influencing malignant hematopoiesis; however, the function of miRNA in LSC remains undetermined. Here we show that miRNA profiling of fractionated AML populations defines an LSC-specific signature that is highly predictive of patient survival. Gain-of-function genetic analysis demonstrated that miR-126 restrained cell cycle progression, prevented LSC differentiation, and increased LSC self-renewal. miR-126 promoted chemo-resistance, preserving LSC quiescence in part through suppression of the G0-to-G1 gatekeeper, CDK3. Thus, in AML, miRNAs influence patient outcome through post-transcriptional regulation of stemness programs in LSC.
miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells.
Specimen part, Cell line, Treatment
View SamplesPost-traumatic stress disorder is a concerning psycho behavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is two-fold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at “risk” of developing PTSD, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to test the hypothesis that the transcriptome can be used to track the development of PTSD in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms) were determined by RNA sequencing technology following their return from deployment to Afghanistan. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed significant differences in two genes, LRP8 and GOLM1 . These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist. Overall design: Peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms)
Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers.
Sex, Subject
View SamplesM cells are the main site of bacterial translocation in the intestine. We used the in vitro M cell model to study the effect of the commensal bacteria; Lactobacillus salivarius, Eschericha coli and Bacteroides fragilis, on M cell gene expression.
Differential intestinal M-cell gene expression response to gut commensals.
Specimen part, Treatment
View SamplesAnalysis of the regulation of gene expression profiles by retinoblastoma-1 in Sertoli cells. Conditional knockout of Rb1 in Sertoli cells led to progressive infertiliy in male mice that occured between 10 and 14 weeks of age. Results of gene expression studies performed on 6 week-old purified Sertoli cells helped elucidate the key role of RB1 in mature, differentiated Sertoli cells.
Retinoblastoma protein plays multiple essential roles in the terminal differentiation of Sertoli cells.
Age, Specimen part
View Samples