Our previous study using nude rats revealed that the parental JDCaP xenografts predominantly expressed full-length androgen receptor (AR) whereas the relapsed JDCaP xenografts after castration acquired AR splice variants including AR-V7 and ARv567es. To understand molecular mechanisms underlying the acquisition of AR splice variants in the JDCaP model, we performed microarray analysis using RNA samples of the xenografts without castration (Parent), the relapsed xenografts overexpressing full-length AR and AR-V7 (ARhiV7hi), and the relapsed xenografts expressing ARv567es (ARv567es).
The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.
Specimen part
View SamplesThe goal of this study was to identify signaling molecules downstream of CXCR4 in breast cancer cells. For this purpose, we sorted CXCR4-positive and CXCR4-negative cells from MDA-MB-231 breast cancer cell line by flow cytometry and performed microarrays analysis.
ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer.
Specimen part, Cell line, Treatment
View SamplesCD44+/CD24- subpopulation of normal and cancerous breast epithelial cells are suggested to have stem cell properties. The goal of this study was to identify gene expression differences between CD44+/CD24- and CD44-/CD24+ subpopulation of cells from a same cell lines. We selected MCF-10A cells, which are immortalized derived from a fibrocystic breast disease. These cells are immortalized but not transformed and express basal cell markers.
SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype.
Specimen part
View SamplesThe cell-type origin has long been suspected to determine molecular features of tumors but has proven difficult to experimentally validate in human breast cancers because of deficiencies in culturing methods that allow propagation of three major cell types of the breast including stem/basal, luminal-progenitor and mature/differentiated cells. We have created immortalized cell lines from core breast biopsies of ancestry-mapped healthy women that are enriched for luminal gene expression including hormonally sensitive ERa-FOXA1-GATA3 transcription factor network. Gene expression pattern followed by intrinsic subtype classification identified these cell lines as “normal” counterpart to luminal A, basal, and normal-like subtypes of breast cancers. We have also created cell lines from CD201+/EpCAM- cells that are likely “normal” counter part of claudin-low subtype of breast cancers. These cell lines serve as good resources as “normal” cell line controls for breast cancer-related studies. Overall design: We propagated breast epithelial cells from breast core biopsies of healthy women using the epithelial reprogramming assay (Nakshatri et al., Scientific Reports, 5:13526). Primary cells were immortalized using human telomerase (hTERT). RNA from immortalized cells in triplicates was subjected to RNA-seq and results are included. hTERT immortalized HME cells from Horizon Discovery, MCF10A cells from ATCC and MCF7 breast cancer cells from ATCC were used as controls for comparison. 1505-10B corresponds to immortalized cells with germ line BRCA2 mutation. KTB40 and KTB42 differ from the rest of the cell lines with respect to cell surface markers profiles. These cells are CD201+/EpCAM-, whereas the remaining cells are CD201+/EpCAM+ or CD201-/EpCAM+. KTB40 and KTB42 are phenotypically fibroblastic or display features of epithelial to mesenchymal transition, whereas the remaining KTB (Komen Tissue Bank) cell lines display luminal features. This series also includes RNA-seq data for non-immortalized cell lines.
Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade.
Specimen part, Cell line, Subject
View SamplesGlobal DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.
Global DNA hypomethylation coupled to cellular transformation and metastatic ability.
Cell line
View SamplesWhy breast cancers become resistant to tamoxifen despite continued expression of the estrogen receptor alpha (ER) and what factors are responsible for high HER2 expression in these tumors remains an enigma. HOXB7 ChIP analysis followed by validation showed that HOXB7 physically interacts with ER, and that the HOXB7-ER complex enhances transcription of many ER target genes including HER2. Investigating strategies for controlling HOXB7, our studies revealed that MYC, stabilized via phosphorylation mediated by EGFR-HER2 signaling, inhibits transcription of miRNA-196a, a HOXB7 repressor. This leads to increased expression of HOXB7, ER-target genes and HER2. Repressing MYC using small molecule inhibitors reverses these events, and causes regression of breast cancer xenografts. The MYC-HOXB7-HER2 signaling pathway is eminently targetable in endocrine-resistant breast cancer.
HOXB7 Is an ERα Cofactor in the Activation of HER2 and Multiple ER Target Genes Leading to Endocrine Resistance.
Cell line, Treatment
View SamplesAtrial specific knockout of Nkx2-5 results in hyperplastic atria with ASD and conduction defects. To examine how Nkx2-5 regulates cardiac proliferation at late gestational stages, RNA-seq was performed. Overall design: Examination of expression profile of 2 Nkx2-5-null atria and 3 controls
Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.
No sample metadata fields
View SamplesC-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.
Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.
Cell line
View SamplesC-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.
Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.
Cell line
View SamplesC-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.
Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.
Cell line
View Samples