NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesNKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).
Cell line, Treatment
View SamplesHomeobox genes encode transcription factors regulating basic processes in cell differentiation during embryogenesis and in the adult. Recently, we have reported the NKL-code which describes physiological expression patterns of nine NKL homeobox genes in early hematopoiesis and in lymphopoiesis including main stages of T-, B- and NK-cell development. Aberrant activity of NKL homeobox genes is involved in the generation of hematological malignancies including T-cell leukemia. Here, we searched for deregulated NKL homeobox genes in main entities of T-cell lymphomas comprising peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL), hepatospleenic T-cell lymphoma (HSTL), and NK/T-cell lymphoma (NKTL). Our data revealed in all types altogether 19 aberrantly overexpressed genes, demonstrating that deregulated NKL homeobox genes play a significant role in T-cell lymphomas as well. For detailed analyses we focused on NKL homeobox gene MSX1 which is normally expressed in NK-cells and aberrantly activated in T-cell leukemia. This gene was overexpressed in subsets of HSTL patients and HSTL-derived sister cell lines DERL-2 and DERL-7 which served as models to identify mechanisms of deregulation. We performed genomic and expression profiling and whole genome sequencing and revealed mutated and deregulated gene candidates including the fusion gene CD53-PDGFRB exclusively expressed in DERL-2. Subsequent knockdown experiments allowed the construction of an aberrant network involved in MSX1 deregulation containing chromatin factors AUTS2 and H3B/H3.1, PDGF- and BMP-signalling pathways, and homeobox genes NKX2-2 and PITX1. The gene encoding AUTS2 is located at 7q11 and may represent a basic target of the HSTL hallmark aberration i(7q). Our data indicate both oncogenic and tumor suppressor functions of MSX1 in HSTL, reflecting its activity in early lineage differentiation of T- and NK-cells and the presence of NK-cell like characteristics in malignant HSTL cells. In this context, NKL homeobox gene MSX1 may represent a selective target in HSTL tumor evolution. Together, the data highlight an oncogenic role of deregulated NKL homeobox genes in T-cell lymphoma and identified MSX1 as a novel player in HSTL, involved in aberrant NK- and T-cell differentiation.
Deregulated expression of NKL homeobox genes in T-cell lymphomas.
Disease, Disease stage, Cell line
View SamplesAutophagy is a mechanism that regulates cellular metabolism and clearance of damaged macromolecules and organelles. Impaired degradation of modified macromolecules contributes to cellular dysfunction and is observed in aged tissue and senescent cells. We have inactivated Atg7, an essential autophagy gene, in murine keratinocytes and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied, how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by Paraquat (PQ), an oxidant drug commonly used to induce cellular senescence.
Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo.
No sample metadata fields
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem cells (HSCs) and during lymphopoiesis, identifying activities of 9 particular genes. Four of these were expressed in HSCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of common target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.
NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.
Cell line
View SamplesPurpose: To identify genes that are transcriptionally controlled by Notch signaling during zebrafish lateral line proneuromast formation. Methods: We isolated primordium cells from dissected tails of 36 hpf Tg((cldnB:GFP);Tg(cldnB:gal4) x Tg(UAS:nicd)) and sibling Tg((cldnB:GFP);Tg(cldnB:gal4)) embryos by FACS and performed RNASeq analysis. Results: Using an optimized data analysis workflow, we mapped about 26 million sequence reads per sample to the zebrafish genome (build danRer10) and identified 32,105 transcripts in the dissociated tails of WT and NICD zebrafish with TopHat workflow. Approximately 2% of the transcripts showed differential expression between the WT and NICD tails, with a fold change =0.5 and p value <0.01. Conclusion: RNASeq analyses revealed that Notch signaling cell-autonomously induces apical constriction and cell adhesion. Overall design: Zebrafish lateral line mRNA profiles of 36 hours wild type (WT) and NICD embryos were generated in triplicate, using HiSeq 2500 (Illumina).
Proliferation-independent regulation of organ size by Fgf/Notch signaling.
No sample metadata fields
View SamplesWe used microarrays to detail the global program of gene expression underlying stemness of hematopoietic cells.
NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.
Specimen part, Disease
View SamplesArabipdosis thaliana (ecotype Col-0) was infected with the root pathogen Plasmodiophora brassicae. Gene expression of the host plant has been analyzed at two time points after inoculation (10 and 23 days after inoculation) compared to the correspondend control plants.
Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development.
Age, Specimen part, Cell line, Time
View SamplesIn polygenic disorders we do not know exactly, how many genes are involved in the pathomechanism, but the analysis of fetal gene expression can get us closer to the solution. In our study we were searching for the genetic background of the polygenic neural tube defect, which is the second most common birth defect in the world (1 in 1000 live births). Our data revealed novel candidate genes, like SLAP, LST1 and BENE, which can play an important role in the pathogenesis of neural tube defects. We created a data warehouse from the results, suitable for further analysis. This study also demonstrates that a routinely collected amount of amniotic fluid (as small as 6 mL) is enough to successfully hybridize isolated RNA to expression arrays, making the ability to use the technique from normally collected amniotic fluid samples.
Use of routinely collected amniotic fluid for whole-genome expression analysis of polygenic disorders.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells.
Specimen part, Cell line
View Samples