Arabidopsis thaliana wild-type and ire1a/ire1b double mutant plants were treated with tunicamycin. RNA was extracted and subjected to microarray analysis.
Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor.
No sample metadata fields
View SamplesAstaxanthin alleviates hepatic lipid accumulation and peroxidation, inflammation, and fibrosis in mice with high-cholesterol, high-cholate, and high-fat (CL) diet-induced nonalcoholic steatohepatitis (NASH). It has been proposed as a potential new treatment to inhibit the progression of NASH in humans. Therefore, we compared hepatic gene expression profiles after treatment with astaxanthin or the antioxidant vitamin E in mice with CL diet-induced NASH. Comprehensive gene expression analyses of the livers of mice fed a standard, CL, or CL diet containing astaxanthin or vitamin E for 12 weeks were performed using a DNA microarray. Both astaxanthin and vitamin E effectively improved gene expression associated with eukaryotic initiation factor-2 (EIF2) signaling, which is suppressed in NASH by endoplasmic reticulum (ER) stress in the liver.
Hepatic Transcriptome Profiles of Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E.
Sex, Specimen part
View SamplesArabidopsis seedlings of wildtype or ire1a ire1b double mutant were treated with or without tunicamycine in the presence of actinomycin D (ActD).
Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response.
Treatment
View SamplesIn most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin de-compaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity, and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina, and die of cardiac malfunction. Chromatin de-compaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions.
Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness.
Specimen part
View SamplesAge-related macular degeneration (AMD) is a complex multifactorial disease with at least 34 loci contributing to genetic susceptibility. To gain functional understanding of AMD genetics, we generated transcriptional profiles of retina from 453 individuals including both controls and cases at distinct stages of AMD. We integrated retinal transcriptomes, covering 13,662 protein-coding and 1,462 noncoding genes, with genotypes at over 9 million common single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTL) analysis of a tissue not included in Genotype-Tissue Expression (GTEx) and other large datasets. Cis-eQTL analysis revealed 10,474 genes under genetic regulation, including 4,541 eQTLs detected only in the retina. We then integrated the AMD-genome-wide association studies (GWAS) data with eQTLs and ascertained target genes at six loci. Furthermore, using transcriptome wide association analysis (TWAS), we identified 23 additional AMD-associated genes, including RLBP1, HIC1 and PARP12. Our studies expand the genetic landscape of AMD leading to direct targets for biological evaluation and establish the Genotype-Retina Expression (GREx) database as a resource for post-GWAS interpretation of retina-associated traits including glaucoma and diabetic retinopathy. Overall design: Retinal samples from 523 aged post-mortem human subjects from a spectrum of age-related macular degeneration (AMD) were RNA-seq profiled.
Improved Retinal Organoid Differentiation by Modulating Signaling Pathways Revealed by Comparative Transcriptome Analyses with Development In Vivo.
No sample metadata fields
View SamplesErbB receptor ligands, epidermal growth factor (EGF) and heregulin (HRG), induce dose-dependent transient and sustained intracellular signaling, proliferation and differentiation of MCF-7 breast cancer cells, respectively. In an effort to delineate the ligand-specific cell determination mechanism, we investigated time-course gene expressions induced by EGF and HRG that induce distinct cellular phenotypes in MCF-7 cells. To analyze the effects of ligand dosage and time for the gene expression independently, we developed a statistical method for decomposing the expression profiles into the two effects. Our results indicated that signal transduction pathways devotedly convey quantitative properties of the dose-dependent activation of ErbB receptor to early transcription. The results also implied that moderate changes in the expression levels of numbers of genes, not the predominant regulation of a few specific genes, might cooperatively work at the early stage of the transcription for determining the cell fate. However, the EGF- and HRG-induced distinct signal durations resulted in the ligand-oriented biphasic induction of proteins after 20 min. The selected gene list and HRG-induced prolonged signaling suggested that transcriptional feedback to the intracellular signaling results in a graded to biphasic response in the cell determination process, and that each ErbB receptor is inextricably responsible for the control of amplitude and duration of cellular biochemical reactions.
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
Cell line
View SamplesColon cancer invade to depper layer and the expression of major molecules at cancer front change. But the screening of expression changing at cancer front has not be adequtely clarified.
Microarray Analysis of Gene Expression at the Tumor Front of Colon Cancer.
No sample metadata fields
View SamplesEGF and HRG, growth factor ligands for EGFR and ErbB3/4 receptor, induce transient and sustained ERK activity associated with cellular proliferation and differentiation of MCF-7 cells, respectively. To rigorously analyze the effect of ERK signal duration for mRNA expression dynamics and its relationship with cell determination, we modified the EGF-triggered ERK signal duration by changing the EGFR activation dynamics by impairing the ubiquitination and degradation process. Mutation of the six lysine residues (6KR; K692, K713, K730, K843, K905 and K946) of the EGFR responsible for ubiquitin conjugation has shown sustained phosphorylation of the receptor (Huang et al, 2006; Goh et al, 2010). Therefore we constructed the MCF-7 cell lines that stably express 6KR EGFR (6KR), and analyzed signaling and mRNA expression dynamics in response to EGF and HRG.
Feedforward regulation of mRNA stability by prolonged extracellular signal-regulated kinase activity.
Sex, Age, Specimen part, Disease, Cell line, Race, Time
View SamplesTo evaluate the effect of -cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% -cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, -cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice.
β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice.
Sex, Specimen part
View SamplesSharing common ErbB/HER receptor signaling pathway, heregulin (HRG) induces differentiation of MCF-7 breast cancer cells while epidermal growth factor (EGF) elicits proliferation. Although the cell fate led by those two ligands was totally different, the gene expression profile in early transcription was unexpectedly qualitatively similar, suggesting that the gene expression in late transcription, not early transcription, may reflect a respect of ligand specificity. In this study, based on the data from time-course microarray of all human genes, we predicted and determined a series of transcription factors which may control HRG-specific timed-late transcription and cellular differentiation of MCF-7 cells. Validation analyses showed that one of activator protein 1 (AP-1) families appeared just after c-Fos expression, another AP-1 family partner, induced expression of another transcription factor through activation of AP-1 complex. Furthermore, expression of this transcription factors caused suppression of extracellular signal-regulated kinase (ERK) phosphorylation which is sustainedly regulated by HRG-initiated ErbB signaling. Overall, our analysis indicated an importance of formation of timed-transcriptional regulatory network and its function to control upstream signaling pathway through negative feedback for cellular differentiation.
Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells.
Cell line
View Samples