MicroRNAs serve to fine-tune gene expression and play an important regulatory role in tissue specific gene networks. The identification and validation of miRNA target genes in a tissue still poses a significant problem since the presence of a seed sequence in the 3´UTR of an mRNA and its expression modulation upon ectopic expression of the miRNA do not reliably predict regulation under physiological conditions. The chimeric oncoprotein EWS-FLI1 is the driving pathogenic force in Ewing Sarcoma. miR-17-92, one of the most potent oncogenic miRNAs, was recently reported to be the top EWS-FLI1 activated miRNA. Using a combination of AGO2 pull-down experiments by PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) and of RNAseq upon miRNA depletion by ectopic sponge expression, we aimed to identify the targetome of miR-17-92 in Ewing sarcoma. Intersecting both datasets we found an enrichment of PAR-CLIP hits for members of the miR-17-92 cluster in the 3´UTRs of genes up-regulated in response to mir-17-92 specific sponge expression. Strikingly, approximately a quarter of these genes annotate to the TGFB/BMP pathway, the majority mapping downstream of SMAD signalling. Taken together, our findings shed light on the complex miRegulatory landscape of Ewing Sarcoma pointing miR-17-92 as a key node connected to TGFB/BMP pathway Overall design: mRNA profiles of a Ewings Sarcoma cellline (clone of A673 with inducible sh EWS-FLI1 knockdown) treated with microRNA sponges and controls
The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma.
Cell line, Treatment, Subject
View SamplesThe same entry pathway is shared by HBV and HDV. Both viruses attach to hepatocytes via heparansulfate proteoglycan and utilize sodium taurocholate co-transporting polypeptide (NTCP) for a specifc entry. This specific entry step is inhibited by Myrcludex B, a 47-aa lipopeptide myristoylated at the N-terminus. Here we compared the cellular response in the gene expression level triggerred by both viruses. The microarray data shows that HBV infection leads to a silent response but HDV infection triggers high level of innate response such as inteferon-stimulated genes (ISG) expression. Moreover, the response depends on the hepatic cell lines used for infection. Compared to HepG2 cells, HuH7 can not induce ISG even infected by HDV.
Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes.
Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma.
Cell line, Treatment
View SamplesEwing Sarcoma (EwS) is a EWS-FLI1- fusion driven pediatric bone cancer with high metastatic potential. Cellular plasticity, typically regulated via the Rho-pathway, is a prerequisite for metastasis initiation. Here we interrogated the role of the Rho transcriptional effectors MRTFA/B in EwS. We find MRTFB transcriptional function strongly repressed by EWS-FLI1. Under EWS-FLI1-low (knock-down) conditions, MRTFB is activated and antagonizes global EWS-FLI1-dependent transcription. Furthermore, ChIP-Seq revealed strong overlaps in MRTFB and EWS-FLI1 chromatin occupation, especially for EWS-FLI1 suppressed-(anticorrelated) genes. Enrichment of TEAD binding motifs in these shared genomic binding regions, and overlapping transcriptional footprints of MRTFB and TEAD1-4 perturbation led us to propose synergy between MRTFB and TEAD in the regulation of EWS-FLI1 suppressed-anticorrelated genes. Finally, we find F-actin assembly to be already perturbed in our EwS model, F-actin polymerization is perturbed by EWS-FLI1 in our model cell line, however,but pharmacological inhibition of actin polymerization still reduced expression serum-induced expression of MRTFB/YAP-1/TEAD target genes. In summary our data support a model of indirect and direct EWS-FLI1-driven perturbation of MRTFB/YAP-1/TEAD target gene regulation . Overall design: 1. Transient si-RNA mediated knockdown of MRTFA (MKL-1), MRTFB (MKL-2) and doxycyline-induced EWS-FLI1 knockdown in A673/TR/shEF EwS cells (8 samples/replicate: 2 replicates total); 2. Combined transient knockdown of MRTFA, MRTFB and EWS-FLI1 in SK-N-MC EwS cells (4 samples/replicate: 2 replicates total); 3. Combined knockdown of TEAD1-4 by pooling si-RNA against TEAD1, TEAD2, TEAD3 and TEAD 4 combined with doxycycline-inducible EWS-FLI1 knockdown (4 samples/replicate: 8 samples total)
EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma.
Cell line, Treatment, Subject
View SamplesEwing Sarcoma (EwS) is a EWS-FLI1- fusion driven pediatric bone cancer with high metastatic potential. Cellular plasticity, typically regulated via the Rho-pathway, is a prerequisite for metastasis initiation. Here we interrogated the role of the Rho transcriptional effectors MRTFA/B in EwS. We find MRTFB transcriptional function strongly repressed by EWS-FLI1. Under EWS-FLI1-low (knock-down) conditions, MRTFB is activated and antagonizes global EWS-FLI1-dependent transcription. Furthermore, ChIP-Seq revealed strong overlaps in MRTFB and EWS-FLI1 chromatin occupation, especially for EWS-FLI1 suppressed-(anticorrelated) genes. Enrichment of TEAD binding motifs in these shared genomic binding regions, and overlapping transcriptional footprints of MRTFB and TEAD1-4 perturbation led us to propose synergy between MRTFB and TEAD in the regulation of EWS-FLI1 suppressed-anticorrelated genes. Finally, we find F-actin assembly to be already perturbed in our EwS model, F-actin polymerization is perturbed by EWS-FLI1 in our model cell line, however,but pharmacological inhibition of actin polymerization still reduced expression serum-induced expression of MRTFB/YAP-1/TEAD target genes. In summary our data support a model of indirect and direct EWS-FLI1-driven perturbation of MRTFB/YAP-1/TEAD target gene regulation .
EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma.
Cell line
View SamplesExpression analysis from two genetically engineered mouse models of osteosarcoma determine the expression profile of mouse osteosarcoma Human osteosarcoma (OS) is comprised of three different subtypes: fibroblastic, chondroblastic and osteoblastic. We previously generated a mouse model of fibroblastic OS by conditional deletion of p53 and Rb in osteoblasts. Here we report an accurate mouse model of the osteoblastic subtype using shRNA-based suppression of p53. Like human OS, tumors frequently present in the long bones and preferentially disseminate to the lungs; features less consistently modeled using Cre:lox approaches. Our approach allowed direct comparison of the in vivo consequences of targeting the same genetic drivers using different technology. This demonstrated that the effects of Cre:lox and shRNA mediated knock-down are qualitatively different, at least in the context of osteosarcoma. Through the use of complementary genetic modification strategies we have established a model of a distinct clinical subtype of OS that was not previously represented and more fully recapitulated the clinical spectrum of this human tumor.
Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA.
Specimen part
View SamplesThe goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and peripheral blood mononuclear cells.
Two-way learning with one-way supervision for gene expression data.
Specimen part
View SamplesThe goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and peripheral blood mononuclear cells.
Two-way learning with one-way supervision for gene expression data.
Specimen part
View SamplesThe goal of this work was to examine if reserveratrol or rosiglitazone treatment could improve the metabolic status of obese male ZDF rats after 6 weeks. Gene expression was analyzed in several key metabolic tissues, including liver, various white adipose tissue depots, red tibalus muscle, and whole blood.
Two-way learning with one-way supervision for gene expression data.
Specimen part
View SamplesMitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) diminishes the nuclear transcriptional response associated with mtDNA damage. Overall design: Six samples were analyzed to determine message RNA levels.
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.
Specimen part, Subject
View Samples