We report the application of low cell number sequencing of identifiable Drosophila melanogaster neurons following behavior. We demonstate the feasibility of identifying the transcriptome of 5 Mushroom Body output Neurons and 2 classes of Kenyon Cells. We find these neurons display a diverse repertoire of receptors and signaling transcripts. This information alone seems to be enough to identify each class of neurons in the study. In additional we show that aversive long-term memory induces changes in gene transcript levels in a subset of these neurons. This study provides a framework for identifying neuronal classes in Drosophila melanogaster and gaining insight into the interplay between behavior and gene regulation. Overall design: 5 Mushroom Body output neurons and 2 classes of kenyon cells are used to look at general gene expression and changes following aversive long term memory. Paired control and trained animals were used and a minimum of 4 pairs up to 6 pairs. Animals were of the same background (w1118). Animals were aged and parental matched. Cells were harvested at the same chronological time for the animals across all experiments. All animals were exposed to 1 minute of each odor and 1 minute of a series of 12 5second 60V shocks. This was considered one block and then the animals had spaced training of each block so there was a 10 minute break between 8 blocks of training. Trained animals had an odor paired with a shock, control animals received the shock then the odor stimulus. All cells were harvested usign a patch pipet from living animals on an electrophysiology rig within a half hour of the end of training. Cells were amplified using the Clontech SMARTer Ultra Low Input RNA version 2 High Volume kit. 2 Brain samples were also collected and 3-4 whole fly samples for each genotype were collected to account for background differences across flies.
Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.
Subject
View SamplesProfiling of MCF-7 cell lines stably overexpressing constitutively active Raf-1, constitutively active MEK, constitutively active c-erbB-2, or ligand-activatable EGFR as models of overexpressed growth factor signaling, as well as control vector transfected cells (coMCF-7) and control vector transfected cells long-term adapted for estrogen-independent growth (coMCF-7/lt-E2).
Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors.
Cell line
View SamplesWe tested the hypothesis that a set of differentially expressed genes could be used to predict cardiovascular phenotype in mice after prolonged catecholamine stress.
Gene expression profiling: classification of mice with left ventricle systolic dysfunction using microarray analysis.
No sample metadata fields
View SamplesRobust type I interferon (IFN-alpha/beta) production in plasmacytoid dendritic cells (pDCs) is critical for anti-viral immunity. Here we demonstrated a role for the mammalian target of rapamycin (mTOR) pathway in regulating interferon production by pDCs. Inhibition of mTOR or the downstream mediators of mTOR p70S6K1,2 kinases during pDC activation via Toll-like receptor 9 (TLR9) blocked the interaction of TLR9 with the adaptor MyD88 and the subsequent activation of interferon response factor 7 (IRF7), resulting in impaired IFN-alpha production. Microarray analysis confirmed that inhibition of mTOR by the immunosuppressive drug rapamycin suppressed anti-viral and anti-inflammatory gene expression. Consistent with this, targeting rapamycin-encapsulated microparticles to antigen-presenting cells in vivo resulted in a diminution of IFN-alpha production in response to CpG DNA or the yellow fever vaccine virus strain 17D. Thus, mTOR signaling plays a critical role in TLR-mediated IFN-alpha responses by pDCs.
Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway.
Sex, Specimen part
View SamplesGenome-wide analysis of decidual transcriptome in pre-eclampsia compared with normotensive controls to find differentially expressed genes/pathways.
Genome-wide transcriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes.
Specimen part, Disease stage
View SamplesHuman transcriptome array analysis of human cord blood mononuclear leokocytes from neonates exposed to histological chorioamnionitis and compared with healthy neonates
Histological Chorioamnionitis Induces Differential Gene Expression in Human Cord Blood Mononuclear Leukocytes from Term Neonates.
Specimen part
View SamplesWe used microarrays to detail the global program of gene expression underlying rRNA processing gene regulation during heat shock. PBF1 is YBL054W (TOD6) and PBF2 is YER088C (DOT6).
High-resolution DNA-binding specificity analysis of yeast transcription factors.
No sample metadata fields
View SamplesMany successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence suggests that activate dendritic cells (DCs) via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates DCs via multiple TLRs to stimulate pro-inflammatory cytokines. Triggering specific combinations of TLRs in DCs can induce synergistic production of cytokines, which results in enhanced T cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that programs such antibody responses remains a major challenge in vaccinology. We demonstrated that immunization of mice with synthetic nanoparticles containing antigens plus Toll-like receptor (TLR) ligands 4 (MPL) + 7 (R837) induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with a single TLR ligand. To determine whether there was any early programming of B cells, we isolated isotype switched, TCRbeta-CD11b-CD19+IgD-IgG+ B cells by FACS at 7 days post immunization with nanoparticles containing various adjuvants plus OVA, and performed microarray analyses to assess their molecular signatures.
Programming the magnitude and persistence of antibody responses with innate immunity.
Specimen part, Time
View SamplesGene expression of T47D-MTVL human breast cancer cells expressing Dox-inducible shRNAs against histone H1.4 (120sh) or multiple H1 variants (225sh) Overall design: Stable breast cancer-derived cell lines expressing an shRNA against one of each of the histone H1 isoforms in response to doxycycline (Dox) were grown for six days in the presence or absence of Doxicycline, RNA extracted and high-thorughput sequenced. Cell lines used: inducible shRNA against H1.4 or multiple H1 variants and random shRNA-expression vector.
Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats.
Cell line, Subject
View SamplesBcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo.
Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo.
Specimen part
View Samples