To develop more potent cell transplantation therapy for neurodegenerative disorder such as Parkinsons disease (PD), the condition of the host brain environment should be considered to improve the outcome of grafted neurons. However, we never know which condition of host brain environment is suitable and supportive for the donor cells. In addition, what endogenous factor(s) do contribute to improve the engraftment of donor cells in host brain? Therefore, the identification of such effective factor(s) strongly contribute to improve the overcome of cell transplantation therapy. Here, we constructed the experimental approach to identify the effective soluble factor(s) for cell-grafting by comparison between various parkinsonian mouse brain condition and transplantation outcome using induced pluripotent stem cell (iPSC)-derived dopaminergic (DA) neuron progenitors. According to our experimental approach, we have identified secreted peptide, neurexophilin 3 (NXPH3) that enhance the survival of grafted-iPSC-derived DA neurons. Grafted-iPSC-derived DA neurons were increased by local supplement of NXPH3 protein. In addition, the expression level of NXPH3 in putamen of PD patients was significantly decreased than that of normal controls by using postmortem samples. These findings would be expected to contribute the new experimental strategy to indentify the endogenous effective factors for cell-grafting as in vivo application of stem cell technology.
Identification of Neurexophilin 3 as a Novel Supportive Factor for Survival of Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors.
Specimen part
View SamplesTo realize cell transplantation therapy for Parkinson's disease (PD), the grafted neurons should be integrated into the host neuronal circuit in order to restore the lost neuronal function. Here, using wheat germ agglutinin-based trans-synaptic tracing, we show that integrin 5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons from the mouse experiments. Additionally, we found that integrin 51 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin 51. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administrated rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD.
Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1.
Specimen part
View SamplesTo examine the transcriptome alteration caused by ZIC5 knockdown in melanoma, we performed gene expression microarray analysis.
ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3.
Cell line
View SamplesTo examine whether energy starvation caused by the increase in rRNA transcription affects liver metabolism, we compared the gene expression profiles of WT and NML-KO livers using Affymetrix microarray technology.
Hepatic rRNA transcription regulates high-fat-diet-induced obesity.
Age, Specimen part
View SamplesIn order to clarify the downstream target genes of SPAG4, we performed knockdown of SPAG4 using siRNA both under normoxia and hypoxia.
Sperm-associated antigen 4, a novel hypoxia-inducible factor 1 target, regulates cytokinesis, and its expression correlates with the prognosis of renal cell carcinoma.
Cell line
View SamplesTranscriptome analysis of post-mortem brain tissue specimens from three brain regions (BRs), entorinal, temporal and frontal cortices, of 71 Japanese brain-donor subjects to identify genes relevant to the expansion of neurofibrillary tangles. In total, 213 brain tissue specimens (= 71 subjects 3 BRs) were involved in this study. The spreading of neurofibrillary tangles (NFTs), intraneuronal aggregates of highly phosphorylated microtubule-associated protein tau, across the human brain is correlated with the cognitive severity of Alzheimers disease (AD). To identify genes relevant to NFT expansion defined by the Braak stage, we conducted exon array analysis with an exploratory sample set consisting of 213 human post-mortem brain tissue specimens from the entorinal, temporal and frontal cortices of 71 brain-donor subjects: Braak NFT stages 0 (N = 13), III (N = 20), IIIIV (N = 19) and VVI (N = 19). We identified eight genes, RELN, PTGS2, MYO5C, TRIL, DCHS2, GRB14, NPAS4 and PHYHD1, associated with the Braak stage. The expression levels of three genes, PHYHD1, MYO5C and GRB14, exhibited reproducible association on real-time quantitative PCR analysis. In another sample set, including control subjects (N = 30) and patients with late-onset AD (N = 37), dementia with Lewy bodies (N = 17) and Parkinson disease (N = 36), the expression levels of two genes, PHYHD1 and MYO5C, were obviously associated with late-onset AD. Proteinprotein interaction network analysis with a public database revealed that PHYHD1 interacts with MYO5C via POT1, and PHYHD1 directly interacts with amyloid beta-peptide 42. It is thus likely that functional failure of PHYHD1 and MYO5C could lead to AD development.
Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease.
Sex, Specimen part, Subject
View SamplesTH-MYCN transgenic (Tg) mice are the model for neuroblastoma. One of the sympathetic ganglia is the origin of neuroblastoma in those mice. The tumor incidences of homozygotes and hemizygotes are 100% and 70-80%, respectively.
Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells.
Specimen part
View SamplesTo examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.
Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.
No sample metadata fields
View SamplesEpithelial gland development within the uterine lining during prepubertal period is important to ensure successful gestation in adults. Lgr5 expression in uterus becomes largely restricted to the tips of developing glands after birth. These Lgr5 highly expressing cells function as stem cells during gland development.
Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development.
Specimen part
View SamplesScope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.
Specimen part
View Samples