TH-MYCN transgenic (Tg) mice are the model for neuroblastoma. One of the sympathetic ganglia is the origin of neuroblastoma in those mice. The tumor incidences of homozygotes and hemizygotes are 100% and 70-80%, respectively.
Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells.
Specimen part
View SamplesHuman T cell leukemia virus type 1 (HTLV-1) Tax is potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. In this study, a large-scale host cell signaling events related to cellular proliferation were used to identify genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis.
Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis.
Cell line
View SamplesIn this study, we used Global Run-On sequencing (GRO-seq), a method that assays the genome-wide location and orientation of all active RNA polymerases. We generated a global profile of active transcription at ERa binding sites in MCF-7 human breast cancer cells in response to short time course of E2 treatment. This method enabled us to detect active transcription at enhancers and define a class of primary transcripts transcribed uni- or bidirectionally from the ERa binding sites. The raw data used in this study is from GSE27463 but sequenced to a greater depth. Overall design: Using GRO-seq over a time course (0, 10, 40 min) of estrogen signaling in ER-alpha positive MCF-7 human breast cancer cells.
Enhancer transcripts mark active estrogen receptor binding sites.
Cell line, Treatment, Subject
View SamplesThe liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high fat diet, the gut microbiota drives PPAR-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPAR-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism.
Gut microbiota directs PPARĪ³-driven reprogramming of the liver circadian clock by nutritional challenge.
Specimen part
View SamplesHIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune respone and cell signaling pathways.
HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages.
Specimen part, Subject
View SamplesEpithelial gland development within the uterine lining during prepubertal period is important to ensure successful gestation in adults. Lgr5 expression in uterus becomes largely restricted to the tips of developing glands after birth. These Lgr5 highly expressing cells function as stem cells during gland development.
Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development.
Specimen part
View SamplesThe circadian clock orchestrates rhythms in physiology and behavior, allowing the organism to adapt to daily environmental changes. Recently, efforts have been made to unravel the connection between the circadian clock and metabolism and to understand how the peripheral clock in different organs coordinates circadian responses to maintain metabolic homeostasis. It is becoming clear that diet can influence diurnal rhythms, however, the molecular mechanisms responsible for alterations in daily oscillations and how tissue-specific clocks interpret a nutritional challenge are not well understood. Here, we reveal tissue-specific circadian plasticity in response to a ketogenic diet (KD) in both the liver and intestine and a remarkable deviation within these two tissues following subsequent carbohydrate supplementation. KD caused a dramatic change in the circadian transcriptome in both liver and intestine in a tissue-specific fashion. In particular, both the amplitude of clock genes as well as specific BMAL1 recruitment was profoundly altered by KD while the intestinal clock was devoid of such plasticity. While PPARG nuclear accumulation was circadian in both tissues, it showed substantial phase specificity as did downstream targets. Finally, the gut and liver clocks had distinct responses to carbohydrate supplementation to KD composition, suggesting a higher plasticity in the ileum whose gene expression was almost restored to control baseline. For the first time our results demonstrate how nutrients modulate clock function in a tissue-specific manner, suggesting that a food stress arouses unique circadian molecular signatures in distinct peripheral tissues.
Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast.
No sample metadata fields
View SamplesMeiotic homologous recombination is a critical DNA-templated event for sexually-reproducing organisms. It is initiated by a programmed formation of DNA double strand breaks (DSBs), mainly formed at recombination hotspots, and is, like all other DNA-related processes, under great influence of chromatin structure. For example, local chromatin around hotspots directly impacts DSB formation. In addition, DSB is proposed to occur in a higher-order chromatin architecture termed axis-loop, in which many loops protrude from proteinaceous axis. Despite many recent insightful studies, still much remains unknown about how meiotic DSBs are generated in chromatin structure. Here, we show that the highly conserved histone H2A variant H2A.Z promotes meiotic DSB formation in fission yeast. Subsequent investigation revealed that H2A.Z is neither enriched around hotspots nor axis sites, and that transcript levels of DSB-promoting factors were maintained in the absence of H2A.Z. Instead, we found that H2A.Z facilitates chromatin binding of various proteins required for DSB formation. Strikingly, artificial tethering of one of such proteins, Rec10, to chromatin partially restored DSB reduction in H2A.Z-lacking cells. Based on these, we conclude that fission yeast H2A.Z promotes initiation of meiotic recombination partly through delivering DSB-related proteins onto chromatin.
The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast.
No sample metadata fields
View SamplesWe established a Tet-On inducible cell line expressing N-terminal Flag-tagged wild-type by doxycycline. We immunoprecipitated Flag-TRBP by anti-FLAG antibody.
LGP2 virus sensor regulates gene expression network mediated by TRBP-bound microRNAs.
No sample metadata fields
View Samples