This SuperSeries is composed of the SubSeries listed below.
Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays.
Specimen part
View SamplesHere we perfomed the Teratoma assay for a normal human embryonic stem cell line (H9(+Dox)), a human embryonic stem cell line with a mesendodermal differentiation bias (H9Hyb), a normal human induced pluripotent stem cell line (LU07), a human induced pluripotent stem cell line with reactivated transgenes (LU07+Dox) and a human embryonal carcinoma cell line (EC) and anayzed their gene expression.
Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays.
No sample metadata fields
View SamplesAnalysis of transcriptional differences between control and RA-treated cells during cardiac differentiation. The hypothesis tested in these samples is that addition of RA during differentiation towards atrial-like cardiomyocytes while control cells treated with DMSO result in ventricular-like cardiomyocytes. Overall design: NKX2.5 (eGFP/w)-hESCs were differentiated to cardiomyocytes with spin EB protocol, with the addition of RA or DMSO. Cells were sorted at day-31 based on GFP resulting in CTplus, CTminus, RAplus or RAminus goups. RNA was isolated from each of these fractions for sequencing.
KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas.
No sample metadata fields
View SamplesThe first HSCs are produced in the aorta-gonadmesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production/expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture. Overall design: Embryonic day 11 AGM are dissected and either analyzed directly, or after explant culture in conditions containing BMP/Hedgehog with or without cyclopamine. EC: endothelial enriched (CD31+Kit-); MC: mesenchymal cell enriched (CD31-Kit-); HPSC: hematopoietic progenitor/stem cell enriched; AGM11: E11 fresh AGMs; AGMex: AGM after explant culture; AGMcy: AGM after explant in presence of cyclopamine; CD31p: CD31 positive; CD31n: CD31 negative; KITp: c-Kit positive; KITn: c-Kit negative; BREp: BRE-GFP positive; BREn: BRE-GFP negative
BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo.
Specimen part, Cell line, Subject
View SamplesIn this study we determine the transcriptional profile by RNAseq of mESC in the absence of Smad1 and Smad5 and in subpopulation of mESC with different levels of BMP-SMAD activation. Overall design: Transcriptome analysis using RNAseq was performed on 3 biological replicates of BRE negative and positive mESC subpopulations, which were collected in pairs at 3 different times. Transcriptome analysis using RNAseq was performed on Smad1/5 floxed (FL) and knockout (KO) mESC. Two different parental cell lines were used. For each parental cell line we analyzed one Smad1/5 FL sample and two Smad1/5 KO samples, resulting in respectively two and four biological replicates for the FL and KO conditions.
BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells.
No sample metadata fields
View SamplesWe used microarrays to assess gene expression changes in cells with siRNA-mediated knockdown of OPG compared to normal cells. Furthermore, we used microarrays to assess gene expression in cells treated with either RANKL or TRAIL compared to vehicle-treated cells.
No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells.
Specimen part, Treatment
View SamplesThe present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or three-fold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each others gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of “novel” genes that were not or little affected by the individual compounds. Based on gene expression changes, the three compounds exhibited a synergistic interaction at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological research illustrating the difference in sensitivity of these techniques. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxins.
Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat.
Sex, Age, Specimen part, Treatment, Compound
View SamplesBackground: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells.
Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics.
Cell line, Treatment
View SamplesThis study compares the transcripts bound to BORIS in neural progenitor cells and cells differentiated for 6 days into young neurons
BORIS/CTCFL is an RNA-binding protein that associates with polysomes.
Specimen part
View SamplesN6-methyladenosine (m6A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m6A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated 8/8 methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time-course, and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminates a conserved, dynamically regulated methylation program in yeast meiosis, and provides an important resource for studying the function of this epitranscriptomic modification. Overall design: Examination of m6A methylation under various conditions
High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis.
Cell line, Subject
View Samples