We used microarrays of eight different cell types in cortex to conduct specificity index analysis for detailed cell type specific molecular profile.
Layer 2/3 pyramidal cells in the medial prefrontal cortex moderate stress induced depressive behaviors.
Specimen part
View SamplesThese data represent two experiments, one on wounding leaves and one based on injecting current into leaves. We first analyzed transcript levels in leaf 13 when leaf 8 was wounded. Transcripts levels in leaf 8 were then analyzed after current injection. Sample handling and normalisations were identical between experiments.
GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling.
Treatment
View SamplesIndividual organisms age at different rates, however, it remains unclear how aging alters the properties of individual cells. Here we show that zebrafish pancreatic beta-cells exhibit heterogeneity in both gene expression and proliferation with age. Individual beta-cells show marked variability in transcripts involved in endoplasmic reticulum stress, inhibition of growth factor signaling and inflammation, including NF-kB signaling. Using a reporter line, we show that NF-kB signaling is indeed activated heterogeneously with age. Notably, beta-cells with higher NF-kB activity proliferate less compared to neighbors with lower activity. Furthermore, NF-kB-signalinghigh beta-cells from younger islets upregulate socs2, a gene naturally expressed in beta-cells from older islets. In turn, socs2 can inhibit proliferation cell-autonomously. NF-kB activation correlates with the recruitment of tnfa-expressing immune cells, pointing towards a role for the islet microenvironment in this activity. We propose that aging is heterogeneous across individual beta-cells and identify NF-kB signaling as a marker of heterogeneity. Overall design: We used fluorescence-activated cell sorting (FACS) coupled with next generation RNA-Sequencing to profile beta-cells from 3 month post fertilization and 1 year post fertilization animals. total RNA was extracted from FACS sorted beta-cells using Quick-RNA MicroPrep kit (R1050 Zymo Research). Sequencing was performed on llumina HiSeq2500 in 2x75bp paired-end mode. Reads were splice-aligned to the zebrafish genome, GRCz10, using HISAT2. htseq-count was used to assign reads to exons thus eventually getting counts per gene.
Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish.
No sample metadata fields
View SamplesTranslational profiling methodologies enable the systematic characterization of cell types in complex tissues such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy to profile CNS cell types in a spatiotemporally-restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by TRAP. We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting AAV injections enabled the elucidation of regional differences in gene expression within this cell type. Taken together, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre. Overall design: Polysome-bound mRNAs from TRAP IPs were compared to whole tissue mRNAs. Data was collected from MCH neurons in hypothalamus using vTRAP, cortical layer 6 Ntsr1 neurons using vTRAP, and cortical layer 6 Ntsr1 neurons using bacTRAP. We include vTRAP data from three AAV serotypes for the cortical Ntsr1 cells. We collected three replicates for IP and inputs for vTRAP experiments, while bacTRAP data was collected in duplicate.
Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP.
Specimen part, Subject
View SamplesPurpose: Seek for differential gene expression in vemurafenib-resistant A375 tumors vs. untreated controls to provide a rationale for resistance mechanism Methods: mRNA profiles of vemurafenib-resistant A375 tumors and untreated control tumors were generated by transcriptome sequencing of A375 melanoma bearing mice. Since our xenograft samples contain a mixture of human and mouse RNAs we mapped RNASeq reads against a hybrid human/mouse genome. We than removed reads of potential mouse origin by taking only reads that map uniquely to human chromosomes. On average 23% of reads were removed as potential mouse reads. We than took the remaining reads (on average 77% per sample) to determine the gene expression levels for each sample. Normalized expression levels of 5 resistant samples were compared to 4 untreated control samples to detect differnetially regulated genes which may contribute to vemurfenib resistance Results: Expression levels of several genes were consistently altered in all resistant samples. Expression of e.g. genes encoding SPRY2, SPRY4, DUSP6, CCND1, PIK3R3, FGFR1, EPHA4, MCL1, and IGF1R was down-regulated, whereas expression of PDGFC, VEGFC, ABCB9 and KITLG was increased. Conclusions: Our study reports several differentially expressed genes which may contribute to vemurafenib resistance in A375 tumor bearing mice Overall design: RNA sequencing of genes expressed in A375 tumors bearing mice treated with vemurafenib until in vivo resistance appeared vs. untreated A375 tumors
A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation.
No sample metadata fields
View SamplesTo study the gene expression profile of salivary glands with varying degrees of inflammation in Sjogren's and non Sjogren's patients
Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Sex, Specimen part, Cell line, Treatment
View SamplesTitle: Array-based gene expression, CGH and tissue data define a 12q24 gain in neuroblastic tumors with prognostic implication.
Array-based gene expression, CGH and tissue data defines a 12q24 gain in neuroblastic tumors with prognostic implication.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View SamplesUnderstanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4+ T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Moreover, in humans, an analysis of the CD4+ T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View Samples