We analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)
A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs).
Specimen part
View SamplesDental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle cells (DFCs) have a promising potential for tissue engineering applications including periodontal and bone regeneration. However, little is known about the molecular mechanisms underlying osteogenic differentiation. In a previous study we detected that more than 35 % of genes that are regulated during osteogenic differentiation of DFCs have promoter binding sites for the transcription factors TP53 and SP1. However, the role of these transcription factors in dental stem cells is still unknown. We hypothesize that both factors influence the processes of cell proliferation and differentiation in dental stem cells. Therefore, we transiently transfected DFCs and dental pulp stem cells (SHED; Stem cells from human exfoliated decidiuous teeth) with expression vectors for these transcription factors. After overexpression of SP1 and TP53, SP1 influenced cell proliferation and TP53 osteogenic differentiation in both dental cell types. The effects on cell proliferation and differentiation were less pronounced after siRNA mediated silencing of TP53 and SP1. This indicates that the effects we observed after TP53 and SP1 overexpression are indirect and subject of complex regulation. Interestingly, upregulated biological processes in DFCs after TP53-overexpression resemble the downregulated biological processes in SHED after SP1-overexpression. Here, regulated processes are involved in cell motility, wound healing and programmed cell death. In conclusion, our study demonstrates that SP1 and TP53 influence cell proliferation and differentiation and similar biological processes in both SHED and DFCs.
Transcription factors TP53 and SP1 and the osteogenic differentiation of dental stem cells.
Specimen part
View SamplesWe analysed gene expression profiles in dental follicle cells after 7 days of osteogenic differentiation with different inducers.
The differentiation and gene expression profile of human dental follicle cells.
Specimen part
View SamplesWe analysed gene expression profiles in dental follicle cells before and after osteogenic differentiation with dexamethasone.
Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro.
Specimen part
View SamplesHepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.
Specimen part, Cell line, Subject
View SamplesYeast lacking the H3 or H4 amino termini, and corresponding wild type strains, were grown in synthetic media. These conditions induce Gcn4-activated transcription.
Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.
No sample metadata fields
View SamplesAbf1 and Rap1 are General Regulatory Factors that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing, and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. We have used microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37 C. We combined this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identified a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we showed for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar "memory effect" that allows continued transcription after loss of Abf1 binding.
Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesWe performed genomic and transcriptomic analysis of seven cases of molecular Burkitt lymphoma (mBL) developed in immunosuppressed patients who underwent solid organ transplantation. Interestingly, three cases (43%) were MYC-translocation-negative and revealed the 11q-gain/loss aberration recently identified in 3% of mBL developed in immunocompetent hosts.1 Based on array CGH data, minimal gain and loss regions of 11q (MGR/~4Mb and MLR/~13.5Mb, respectively) were defined and integrative genomic and transcriptomic analysis identified 35 differentially expressed genes, when compared with classic BL. All 16 MGR-dysregulated genes were upregulated, including cancer related USP2, CBL and PAFAH1B2. As expected, all 19 MGL-dysregulated genes were downregulated and two of them, TBRG1 and EI24, are potential tumor suppressor genes. Interestingly, the vast majority of dysregulated 11q23-q25 genes are involved in the MYC and TP53 networks. We hypothesize that the 11q-gain/loss aberration represents a molecular variant of t(8q24/MYC) and affects the same pathological pathways as the MYC oncogene.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesSignal intensity data for rpd3 delete, H3delta(1-28), H3(K4,9,14,18,23,27Q), H4delta(2-26), H4(K5,8,12,16Q), rpd3 delete H3delta(1-28), and rpd3 delete H4(K5,8,12,16Q) yeast grown in rich (YPD) media
Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast.
No sample metadata fields
View Samples