Gene expressions relate to the pathogenesis of periodontitis and have a crucial role in local tissue destruction and susceptibility to the disease. The aims of the present study were to explore comprehensive gene expressions/transcriptomes in periodontitis-affected gingival tissues, and to identify specific biological processes.
Altered gene expression in leukocyte transendothelial migration and cell communication pathways in periodontitis-affected gingival tissues.
Sex, Specimen part
View SamplesAlcoholism is a complex disorder determined by interactions between genetic and environmental risk factors. Drosophila represents a powerful model system to dissect the genetic architecture of alcohol sensitivity, as large numbers of flies can readily be reared in defined genetic backgrounds and under controlled environmental conditions. Furthermore, flies exposed to ethanol undergo physiological and behavioral changes that resemble human alcohol intoxication, including loss of postural control, sedation, and development of tolerance.
Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.
Specimen part
View SamplesAlthough the conserved AAA ATPase – bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2’s function as a facilitator of general chromatin-templated activities such as transcription. Overall design: We used a siRNA approach to knock-down Atad2 and measure the resulting variations in gene expression by RNA-seq
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.
No sample metadata fields
View SamplesAlthough the conserved AAA ATPase bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2s function as a facilitator of general chromatin-templated activities such as transcription.
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.
Specimen part
View SamplesHepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.
Specimen part, Cell line, Subject
View SamplesA chromosomal translocation fusion gene product EWS-WT1 is the defining genetic event in Desmoplastic Small Round Cell Tumor (DSRCT), a rare but aggressive tumor with a high rate of mortality. EWS-WT1 oncogene acts as an aberrant transcription factor that drives tumorigenesis, but the mechanism by which EWS-WT1 causes tumorigenesis is not well understood. To delineate the oncogenic mechanisms, we generated the EWS-WT1 fusion in the mouse using a gene targeting (knock-in) approach, enabling physiologic expression of EWS-WT1 under the native Ews promoter. We derived mouse embryonic fibroblasts (MEFs) and performed genome-wide expression profiling to identify transcripts directly regulated by EWS-WT1. Remarkably, expression of EWS-WT1 led to a dramatic induction of many neuronal genes. Notably, a neural reprogramming factor, ASCL1 (achaete-scute complex-like 1), was highly induced by EWS-WT1 in MEFs and in primary DSRCT. Further analysis demonstrated that EWS-WT1 directly binds to the proximal promoter region of ASCL1 and activates its transcription through multiple WT1-responsive elements. Depletion of EWS-WT1 in a DSRCT cell line resulted in severe reduction in ASCL1 expression and cell viability. Remarkably, when stimulated with neuronal induction media, cells expressing EWS-WT1 expressed neural markers and generated neurite-like projections. These results demonstrate for the first time that EWS-WT1 activates neural gene expression and is capable of directing partial neuronal differentiation, likely via ASCL1. These findings suggest that stimulating DSRCT tumor cells with biological or chemical agents that promote neural differentiation might be a useful approach to develop novel therapeutics against this incurable disease.
EWS-WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation.
Specimen part, Time
View SamplesGlobal expression analysis of neural crest-like skin-derived precursors (SKPs) and Sox2-positive follicle dermal cells that SKPs originate from.
SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.
Specimen part
View SamplesIn spite of the many recent developments in the field of vector sialomics, the salivary glands of larvalmosquitoes have been largely unexplored. We used whole-transcriptome microarray analysis to create a gene-expression profile of the salivary gland tissue of fourth-instar Anopheles gambiae larvae, and compare it to the gene-expression profile of a matching group of whole larvae. We identified a total of 221 probes with expression values that were (a) significantly enriched in the salivary glands, and (b)sufficiently annotated as to allow the prediction of the presence/absence of signal peptides in their corresponding gene products. Based on available annotation of the protein sequences associated with these probes, we propose that the main roles of larval salivary secretions include: (a) immune response, (b) mouthpart lubrication, (c) nutrient metabolism, and (d) xenobiotic detoxification. Other highlights of the study include the cloning of a transcript encoding a previously unknown salivary defensin (AgDef5), the confirmation of mucus secretion by the larval salivary glands, and the first report of salivary lipocalins in the Culicidae.
The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.
Cell line
View Samples