The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.
Sarcoptes scabiei mites modulate gene expression in human skin equivalents.
Specimen part, Treatment
View SamplesGenes relevant to manifestion of and variation in aggression behavior might be differentially expressed in lines selected for divergent levels of aggression.
Quantitative genomics of aggressive behavior in Drosophila melanogaster.
No sample metadata fields
View SamplesNeurons deficient in both GSK-3 alpha and beta isoforms fail to migrate properly and develop abnormal morphology. In exploring mechanisms, we found no change in Wnt transcriptional target genes.
GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesAnalysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in enterocytes from intestine specific PGC-1 konckout mice.
PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.
Specimen part
View SamplesOzone pollution decreases plant growth and yield worldwide. Some of the effects are genetically-mediated and are reported to involve G-protein signaling pathways. Effects of ozone on gene expression were examined in wild-type and G-protein null mutants to determine affected genes and to determine differential responses that may help define affected pathways.
Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L.
Treatment, Time
View SamplesIn this study, we jointly profiled mRNA and miRNA expression to determine the role of miRNAs in AD, and whether the levels of miRNAs are related to those of target mRNAs. We found a bias towards positive correlation between levels of miRNAs and those of their targets.
Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation.
Sex, Age, Specimen part, Disease
View SamplesWhole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury, and here we present a comprehensive transcriptional profile of irradiated microglia.
Aging-like changes in the transcriptome of irradiated microglia.
Age, Specimen part
View SamplesAtrial fibrillation (AF) is a progressive arrhythmia for which current therapy is inadequate. During AF, rapid stimulation causes atrial remodeling that promotes further AF. The cellular signals that trigger this process remain poorly understood, however, and elucidation of these factors would likely identify new therapeutic targets. We have previously shown that immortalized mouse atrial (HL-1) myocytes subjected to 24 hr of rapid stimulation in culture undergo remodeling similar to that seen in animal models of atrial tachycardia (AT) and human AF. This preparation is devoid of confounding in vivo variables that can modulate gene expression (e.g., hemodynamics). Therefore, we investigated the transcriptional profile associated with early atrial cell remodeling. RNA was harvested from HL-1 cells cultured for 24 hr in the absence and presence of rapid stimulation and subjected to microarray analysis. Data were normalized using Robust Multichip Analysis (RMA), and genes exhibiting significant differential expression were identified using the Significance Analysis of Microarrays (SAM) method. Using this approach, 919 genes were identified that were significantly altered with rapid stimulation (763 up-regulated and 156 down-regulated). For many individual transcripts, changes typical of AF/AT were observed, with marked up-regulation of genes encoding BNP and ANP precursors, heat shock proteins, and MAP kinases, while novel signaling pathways and molecules were also identified. Both stress and survival response were evident, as well as up-regulation of multiple transcription factors. Genes were also functionally classified based on cellular component, biologic process, and molecular function using the Gene Ontology database to permit direct comparison of our data with other gene sets regulated in human AF and experimental AT. For broad categories of genes grouped by functional classification, there was striking conservation between rapidly stimulated HL-1 cells and AF/AT. Results were confirmed using real-time quantitative RT-PCR on 13 genes selected by physiological relevance in AF/AT and regulation in the microarray analysis (up, down, and nonregulated). Rapidly-stimulated atrial myocytes provide a complementary experimental paradigm to explore the initial cellular signals in AT remodeling to identify novel targets in the treatment of AF.
Transcriptional remodeling of rapidly stimulated HL-1 atrial myocytes exhibits concordance with human atrial fibrillation.
No sample metadata fields
View Samples