Basic helix-loop-helix (bHLH) proneural transcription factors (TFs) Ascl1 and Neurog2 are integral to the development of the nervous system. Here, we investigated the molecular mechanisms by which Ascl1 and Neurog2 control the acquisition of generic neuronal fate and impose neuronal subtype identity. Using direct neuronal programming of embryonic stem cells, we found that Ascl1 and Neurog2 regulate distinct targets by binding to largely different sets of sites. Their divergent binding pattern is not determined by the previous chromatin state but distinguished by specific E-box enrichments which reflect the DNA sequence preference of the bHLH domain. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity landscapes that shape the binding and activity of downstream TFs during neuronal specification. Our findings suggest that proneural factors contribute to neuronal diversity by differentially altering the chromatin landscapes that shape the binding of neuronally expressed TFs. Overall design: Single-cell RNA-seq was used to characterize gene expression in mixed populations of mES cells containing induced expression of either Ascl1 or Neurog2.
Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.
Sex, Specimen part, Subject
View SamplesMolecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.
Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.
Sex, Specimen part, Subject
View SamplesThe Oscillation Zone (OZ) of unsynchronized roots was disected and divided into an upper (OZ2) and lower (OZ1) half .
Oscillating gene expression determines competence for periodic Arabidopsis root branching.
Age, Specimen part
View Samples-cell identity is determined by tightly regulated transcriptional networks that are modulated by extracellular cues, thereby ensuring -cell adaptation to the organisms insulin demands. We have observed in pancreatic islets that stimulatory glucose concentrations induced a gene profile that was similar to that of freshly isolated islets, indicating that glucose-elicited cues are involved in maintaining -cell identity. Low glucose induces the expression of ubiquitous genes involved in stress responses, nutrient sensing, and organelle biogenesis. By contrast, stimulatory glucose concentrations activate genes with a more restricted expression pattern (- and neuronal- cell identity). Consistently, glucose-induced genes are globally reduced in islets deficient with Hnf1a (MODY3), characterized by a deficient glucose metabolism. Of interest, a cell cycle gene module was the most enriched among the variable genes between intermediate and stimulatory glucose concentrations. Glucose regulation of the islet transcriptome was unexpectedly broadly maintained in islets from aged mice. However, the cell cycle gene module is selectively lost in old islets and the glucose activation of this module is not recovered even in the absence of the cell cycle inhibitor p16.
Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing.
Specimen part
View SamplesWe used microarrays to compare the global programme of gene expression in primary cultures of neurons and astrocytes. These data sets were compared to the expression profiles of other tissues, including pancreatic islets, in order to identify a specific neuroendocrine program in pancreatic islets.
Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing.
Specimen part
View SamplesFoxO6 is expressed in the brain, craniofacial region and somite, but the precise role of FoxO6 in craniofacial development remain unknown. We found that FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull.
FoxO6 regulates Hippo signaling and growth of the craniofacial complex.
Specimen part
View SamplesThe underlying mechanisms which are responsible and govern early haematopoietic differentiation during development are poorly understood. Gene expression comparison between pluripotent human embryonic stem cells and earliest haematopoietic progenitors may reveal novel transcripts and pathways and provide crucial insight into early haematopoietic lineage specification and development.
Large-scale transcriptional profiling and functional assays reveal important roles for Rho-GTPase signalling and SCL during haematopoietic differentiation of human embryonic stem cells.
Specimen part, Cell line
View SamplesStaphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lung to define the host response to wild-type S. aureus compared with an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at four and at twenty-four hours post-infection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting bacteria was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent TH17 response to wild-type staphylococci. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary TH17 response to the presence of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease.
Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response.
Sex, Specimen part
View SamplesAdipose tissue inflammation and atherosclerosis are the main mechanisms behind type 2 diabetes and cardiovascular disease respectively, the major risks associated with the metabolic syndrome. Studies considering more than single factors behind the complexity of the metabolic syndrome are valuable to achieve a better and wider understanding of the metabolic syndrome. In this study common dysregulated pathways between adipose tissue inflammation and atherosclerosis were identified using two different bioinformatic tools to perform pathway analysis. First, we run a gene set enrichment analysis utilizing with data from two microarray experiments done with gonadal white adipose tissue and atherosclerotic aorta. Once the common dysregulated pathways between both tissues were identify, the inflammatory response and the oxidative phosphorylation pathways from the Hallmark geneset were selected to conduct a deeper checkup at the single gene level of these pathways. Second, we carried out a pathway analysis validation with the Panther software combining the microarray data with a published type 2 diabetes mellitus metanalysis and cardiovascular disease metanalysis which included human data. In conclusion, this study provides worthwhile data pointing out and describing several dysregulated and common pathways in adipose tissue inflammation and atherosclerotic aorta with a potential implication in the pathogenesis of type 2 diabetes and atherosclerosis.
Common dysregulated pathways in obese adipose tissue and atherosclerosis.
Specimen part
View Samples