This SuperSeries is composed of the SubSeries listed below.
Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes.
Sex
View SamplesA need exists for biomarkers in T1D that can 1) sensitively and specifically detect disease-related immune activity prior to, and independent of, measurement of auto-antibodies towards islet cell antigens; 2) define immunopathological mechanisms; and 3) monitor changes in the inflammatory state associated with disease progression or response to therapeutic intervention. In an effort to fill this gap, we have applied a novel bioassay to both human and BB rat T1D whereby the complex milieu of inflammatory mediators present in plasma can be indirectly detected through their ability to drive transcription in peripheral blood mononuclear cells (PBMCs) drawn from healthy, unrelated donors. The resultant gene expressions are comprehensively measured with a microarray. In our human studies, we find that plasma of recent-onset T1D patients induces expression of a pro-inflammatory signature consisting in part of many interleukin-1 (IL-1) regulated genes related to immunological activation and immunocyte chemotaxis compared to unrelated healthy controls. This signature has been found to resolve in long-standing T1D subjects (>10 years post-onset), thus associating it with active autoimmunity. Importantly, this signature has been detected in pre-onset samples of progressors to T1D years prior to onset and prior to development of auto-antibodies directed towards islet antigens.
Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes.
Sex
View SamplesA need exists for biomarkers in T1D that can 1) sensitively and specifically detect disease-related immune activity prior to, and independent of, measurement of auto-antibodies towards islet cell antigens; 2) define immunopathological mechanisms; and 3) monitor changes in the inflammatory state associated with disease progression or response to therapeutic intervention. In an effort to fill this gap, we have applied a novel bioassay to both human and BB rat T1D whereby the complex milieu of inflammatory mediators present in plasma can be indirectly detected through their ability to drive transcription in peripheral blood mononuclear cells drawn from healthy, unrelated donors. The resultant gene expressions are comprehensively measured with a microarray. In our human studies, we find that plasma of recent-onset T1D patients induces expression of a pro-inflammatory signature consisting in part of many interleukin-1 (IL-1) regulated genes related to immunological activation and immunocyte chemotaxis compared to unrelated healthy controls. This signature has been found to resolve in long-standing T1D subjects (>10 years post-onset), thus associating it with active autoimmunity. Importantly, this signature has been detected in pre-onset samples of progressors to T1D years prior to onset and prior to development of auto-antibodies directed towards islet antigens.
Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes.
No sample metadata fields
View SamplesHuman type 1 diabetes (T1D) arises through autoimmunity towards the insulin-producing pancreatic cells and is modeled by the BioBreeding (BB) rat. Factors associated with islet autoimmunity are dilute and difficult to directly measure in the periphery. Therefore, we previously utilized microarray-based bioassay where human T1D sera were used to induce a disease-specific gene expression signature in unrelated, healthy peripheral blood mononuclear cells (PBMC).
Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat.
No sample metadata fields
View SamplesTranscriptional response to virus infection in mice lacking type I and type III signaling
Transcription factor redundancy ensures induction of the antiviral state.
Specimen part, Cell line, Treatment
View SamplesTVB-3166, an orally available, reversible, potent, and selective FASN inhibitors, was used to investigate FASN as a cancer therapeutic target. FASN inhibition with TVB-3166 induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in vivo xenograft tumor growth.
Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression.
Treatment
View SamplesThe objective of this study was to compare the transcriptional repertoire of mature human neutrophils before and after GM-CSF treatment by using oligonucleotide microarrays.
RhoH/TTF negatively regulates leukotriene production in neutrophils.
Specimen part
View SamplesLittle is known about the function of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) generated from diabetics, as this could potentially limit subsequent therapeutic use in this patient population.
Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism.
Age, Specimen part
View SamplesThe circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question we performed transcriptomic analysis in mice with inducible and conditional ablation of the circadian clock system in the renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport. In parallel, kidneys from Bmal1lox/lox/Pax8-rtTA/LC1 mice exhibited a significant decrease in the NAD+/NADH ratio suggesting an increased anaerobic glycolysis and/or decreased mitochondrial function. In-depth analysis of two selected pathways revealed (i) a significant increase in plasma urea levels correlating with increased renal arginase 2 (Arg2) activity, hyperargininemia and increase of the kidney arginine content; (ii) a significantly increased plasma creatinine concentration and reduced capacity of the kidney to secrete anionic drugs (furosemide), paralleled by a ~80% decrease in the expression levels of organic anion transporter OAT3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at both the intra-renal and systemic levels and are involved in drug disposition. Overall design: Mice with a specific ablation of the Arntl gene encoding BMAL1 in the renal tubular cells were compared to wild-type littermate at ZT4 and ZT16 (ZT – Zeitgeber time units; ZT0 is the time of light on and ZT12 is the time of light off).
Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.
Specimen part, Subject, Time
View SamplesThe quality of maternal care in early-life plays a crucial role in mammalian neurodevelopment. Augmented maternal care (AMC) is a well-established rodent model of enhanced neonatal care. Rats that have undergone AMC have improved stress resilience and cognition compared with rats that have experienced normal levels of maternal care or adverse neonatal stress. However, the epigenomic basis of long-lived responses to AMC has not been previously explored. Thus, we employed whole-genome bisulfite sequencing (WGBS), RNA-sequencing (RNA-seq), and a multiplex microRNA (miRNA) assay to assess DNA cytosine methylation, gene expression, and miRNA expression, respectively. The integrated results identify a suite of 20 prioritized candidates impacted by AMC. Overall, these results identified AMC-induced regulatory differences in genes related to neurotransmission, neurodevelopment, protein synthesis, and oxidative phosphorylation in addition to the expected stress response genes. Together, these unbiased results represent a key progression in understanding the complex mechanisms underlying the early-life mechanisms for AMC programming stress resiliency. Overall design: DNA methylation and RNA were assayed in augmented maternal care male rats as well as controls.
Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches.
Sex, Specimen part, Treatment, Subject
View Samples