By utilizing mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to stimuli, both in vitro and in vivo.
<i>Dnmt3a</i> restrains mast cell inflammatory responses.
Sex, Specimen part, Treatment
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
Specimen part
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
No sample metadata fields
View SamplesDioxygenases of the TET family impact genome functions by converting 5-methylcytosine in DNA to 5-hydroxymethylcytosine, but the individual contribution of the three family members to differentiation and function of myeloid cells is still incompletely understood. Using cells with a deletion in the Tet2 gene, we show that TET2 contributes to the regulation of mast cell differentiation, proliferation and effector functions. The differentiation defect observed in absence of TET2 could be however completely rescued or further exacerbated by modulating TET3 activity, and it was primarily linked to dysregulated expression of the C/EBP family of transcription factors. In contrast, hyper-proliferation induced by the lack of TET2 could not be modified by TET3. Together, our data indicate the existence of both overlapping and unique roles of individual TET proteins in regulating myeloid cell gene expression, proliferation and function. Overall design: Total mRNA of FACS-sorted Kit+ FceRIa+ populations of primary bone marrow-derived mast cells (BMMCs) from Tet2-/- and Tet2+/+ animals was extracted and subjected to multiparallel sequencing.
TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities.
No sample metadata fields
View SamplesPulmonary sarcomatoid carcinomas (PSCs) are rare and aggressive histological types of non-small cell lung cancer (NSCLC) with a median overall survival of about 9-12 months. In detail, PSCs comprise five different histological subtypes: pleomorphic carcinoma (PLC), giant cell carcinoma (GCC), spindle cell carcinoma (SCC), carcinosarcoma (CS) and pulmonary blastoma (PB). Preoperative pathological diagnosis may fail to identify these tumors and therapeutic options are still limited. PSCs have been scarcely characterized from a molecular point of view because of their rarity, and to date no specific markers have been found for PSCs in comparison with other NSCLC types. In this study a highly sensitive amplicon based whole transcriptome quantification analysis was performed, using the Ion AmpliSeq Transcriptome Human Gene Expression Kit (Life Technologies) on a selected series of 14 PSCs (1 PB, 4 CS, 2 SCC, 2 GCC, 5 PLC) and 3 samples of normal lung parenchyma. PSCs expression data were then compared with transcriptome data of lung adenocarcinoma and squamous cell carcinoma available on The Cancer Genome Atlas database. Thirty-eight genes specifically deregulated in PSC samples were identified. Among these, IGJ and SLMAP were validated by immunohistochemistry on an independent cohort (30 PSCs, 31 lung adenocarcinoma and 31 squamous cell carcinoma cases). Furthermore, a pathway enrichment analysis, performed on differentially expressed genes, revealed that FOXO signalling and Fanconi Anemia pathways, playing a pivotal role in cancer development and progression, are enriched in PSC tumors. The description of peculiar molecular profiles besides increasing our knowledge on PSCs biology may suggest new diagnostic and therapeutic strategies. Overall design: Whole transcriptome targeted gene quantification analysis was perfomed on a selected series of 14 pulmonary sarcomatoid carcinomas (1 pulmonary blastoma, 4 carcinosarcomas, 2 spindle cell carcinomas, 2 giant cell carcinomas, 5 pleomorphic carcinomas) and 3 samples of normal lung parenchyma, using the Ion AmpliSeq Transcriptome Human Gene Expression Kit ( Life Technologies).
Whole transcriptome targeted gene quantification provides new insights on pulmonary sarcomatoid carcinomas.
Sex, Age, Specimen part, Subject
View SamplesRNA sequencing of ILC2s sorted from ß2 adrenergic receptor agonist-treated and non-treated mice Overall design: RNAs of ILC2s sorted as KLRG1+CD127+CD90+Lin-CD45+ from ß2 adrenergic receptor agonist-treated and non-treated mice mLNs 4 days post N. brasiliensis infection were analyzed
β<sub>2</sub>-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.
Specimen part, Cell line, Treatment, Subject
View SamplesAntibiotic-treated (ABX) mice exhibit an impaired innate and adaptive antiviral immune response and substantially delayed viral clearance following exposure to systemic LCMV or mucosal influenza virus. Genome-wide transcriptional profiling of macrophages isolated from ABX mice revealed decreased expression of genes associated with antiviral immunity. Moreover, macrophages from ABX mice exhibited defective responses to type I and type II IFNs and impaired capacity to limit viral replication. Collectively, these data indicate that commensal-derived signals provide tonic immune stimulation that establishes the activation threshold of the innate immune system required for optimal antiviral immunity.
Commensal bacteria calibrate the activation threshold of innate antiviral immunity.
Sex, Specimen part, Treatment
View SamplesWe provide a map of human ILC heterogeneity across multiple anatomical sites. Tissue-specific distinctions are particularly apparent for ILC1 populations, whose distribution was markedly altered in obesity or aging. Furthermore, the degree of ILC1 population hetero- geneity differed substantially in lymphoid versus mucosal sites. Together, these analyses comprise a comprehensive characterization of the spatial and temporal dynamics regulating the anatomical distri- bution, subset heterogeneity, and functional poten- tial of ILCs in non-diseased human tissues. Overall design: We present a quantitative analysis of ILC distribution and heterogeneity in lymphoid, mucosal, and metabolic tissues obtained from a diverse cohort of 44 previously non-diseased organ donors over a wide range of ages and body mass indexes (BMIs).
Spatial and Temporal Mapping of Human Innate Lymphoid Cells Reveals Elements of Tissue Specificity.
Specimen part, Subject
View SamplesThe type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 play critical roles in stimulating innate and adaptive immune responses required for resistance to helminth infection and promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells (ILC2s) are a potent source of type 2 cytokines and while significant advances have been made in understanding the cytokine milieu that promotes ILC2 responses, there are fundamental gaps in knowledge regarding how ILC2 responses are regulated by other stimuli. In this report, we demonstrate that ILC2s in the gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other hematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation and secretion of type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gaq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1-/- mice compared to control mice. Further, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU-NMUR1 neuronal signaling circuit provides a selective and previously unrecognized mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites. Overall design: To assess changes in gene expression in ILC2s due to NMU treatment, RNAseq was performed on 3 samples from NMU-treated mice and 4 samples from PBS-treated mice.
The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation.
Specimen part, Cell line, Treatment, Subject
View SamplesThe type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 play critical roles in stimulating innate and adaptive immune responses required for resistance to helminth infection and promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells (ILC2s) are a potent source of type 2 cytokines and while significant advances have been made in understanding the cytokine milieu that promotes ILC2 responses, there are fundamental gaps in knowledge regarding how ILC2 responses are regulated by other stimuli. In this report, we demonstrate that ILC2s in the gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other hematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation and secretion of type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gaq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1-/- mice compared to control mice. Further, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU-NMUR1 neuronal signaling circuit provides a selective and previously unrecognized mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites. Overall design: Transcriptional differences between ILC2s and ILC3s were determined by RNAseq using 3 ILC2 samples and 3 ILC3 samples.
The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation.
Specimen part, Cell line, Subject
View Samples