Gene expression from cord blood stem cells and respective derived neuronal cells at different times point of differentiation:CD133+ cells;
Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.
Specimen part, Time
View SamplesGene expression data obtained from induced pluripotent stem cells derived from wild type fibroblasts (iPSc WT) and from Gaucher Disease type 2 fibroblasts (GD iPSc). Also, gene expression analysis from the initial fibroblasts was made (WT fibroblasts and GD- fibroblasts), as well as gene expression analysis from a human embryonic stem cell line (hES4).
Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.
Cell line
View SamplesThe clinical efficacy of EGFR kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here we show that in multiple complementary models harboring EGFR T790M, resistance to WZ4002 develops through aberrant activation of ERK signaling caused by either an amplification of MAPK1 or by downregulation of negative regulators of ERK signaling. Inhibition of MEK or ERK restores sensitivity to WZ4002, and the combination of WZ4002 and a MEK inhibitor prevents the emergence of drug resistance. The WZ4002 resistant MAPK1 amplified cells also demonstrate an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy compared to the parental counterparts. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.
Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.
Cell line
View SamplesChromatin and transcriptome comparisons of matched NSCs and derivative GSCs reveal activation of WNT5A and an EC signature
Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.
Disease, Disease stage
View SamplesTranscriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem cell commitment during neurogenesis. “LncRNAs control neurogenesis” Aprea, Prenninger, Dori, Monasor, Wessendof, Zocher, Massalini, Ghosh, Alexopoulou, Lesche, Dahl, Groszer, Hiller, Calegari, The EMBO Journal (In Press) Overall design: mRNA profiles of Proliferating Progenitors, Differentiating Progenitors and Neurons from lateral cortex of E14.5 mouse embryos. Each cell type in three biological replicates.
Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.
No sample metadata fields
View SamplesViral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.
Specimen part, Time
View SamplesThe mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the wide variety of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for these processes during specification of dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for the excitatory neuronal lineages in the dorsal neural tube while also suppressing a battery of genes that determine ventral neural tube fates including Olig1, Olig2 and Prdm12. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing bHLH transcriptional activators that together are required to achieve precise neuronal specification during development. Overall design: RNA-seq analysis performed on GFP+ cells sorted by FACS from Prdm13GFP/+ or Prdm13GFP/GFP mouse E11.5 neural tubes to identify gene expression in the presence and absence of PRDM13.
Repression by PRDM13 is critical for generating precision in neuronal identity.
Subject
View SamplesGene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen) for samples that use a different set of amplification reagents (Ambion WT Expression Kit, not the Affymetrix GeneChip WT cDNA Synthesis and Amplification Kits).
The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells.
Sex, Age, Specimen part
View SamplesThe experiment consists of 31 Systemic Lupus Erythematosus patient blood samples and 29 healthy donor blood samples. Overall design: Whole blood was collected in PaxGene tubes from 31 SLE and 29 healthy donors.
Machine learning applied to whole-blood RNA-sequencing data uncovers distinct subsets of patients with systemic lupus erythematosus.
Sex, Age, Specimen part, Subject
View Samples