Transforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.
Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.
Specimen part
View SamplesWe created a rat sugar cataract model and examined the effects of various inhibitors on lens clouding. Lenses were removed from 6-week-old SD rats and cultured in M199 medium containing 30 mM galactose.
Histone acetyltransferase and Polo-like kinase 3 inhibitors prevent rat galactose-induced cataract.
Age, Specimen part
View SamplesWe aimed to identify a reprogramming factor in mammalian oocytes. DJ-1 is one candidate gene of the factor. Inhibition of DJ-1 function in nuclear transfer embryos affected developmental abilities. The downstream effect of this DJ-1 inhibition was examined using microarrays.
Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos.
Disease
View SamplesThe purpose of the present study was to investigate the association of glutathione S-transferase P1 (GSTP1) expression with resistance to neoadjuvant paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC) in human breast cancers. The relationship of GSTP1 expression and GSTP1 promoter hypermethylation with intrinsic subtypes was also investigated. In this study, primary breast cancer patients (n = 123, stage II-III) treated with neoadjuvant P-FEC were analyzed. Tumor samples were obtained by vacuum-assisted core biopsy before P-FEC. GSTP1 expression was determined using immunohistochemistry, GSTP1 promoter methylation index (MI) using bisulfite methylation assay and intrinsic subtypes using DNA microarray. The pathological complete response (pCR) rate was significantly higher in GSTP1-negative tumors (80.0%) than GSTP1-positive tumors (30.6%) (P = 0.009) among estrogen receptor (ER)-negative tumors but not among ER-positive tumors (P = 0.267). Multivariate analysis showed that GSTP1 was the only predictive factor for pCR (P = 0.013) among ER-negative tumors. Luminal A, luminal B and HER2-enriched tumors showed a significantly lower GSTP1 positivity than basal-like tumors (P = 0.002, P < 0.001 and P = 0.009, respectively), while luminal A, luminal B and HER2-enriched tumors showed a higher GSTP1 MI than basal-like tumors (P = 0.076, P < 0.001 and P < 0.001, respectively). In conclusion, these results suggest the possibility that GSTP1 expression can predict pathological response to P-FEC in ER-negative tumors but not in ER-positive tumors. Additionally, GSTP1 promoter hypermethylation might be implicated more importantly in the pathogenesis of luminal A, luminal B and HER2-enriched tumors than basal-like tumors.
GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer.
Age, Specimen part, Disease stage
View SamplesLipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand, activates intracellular signaling via adaptors, MyD88 and TRIF, leading to the expression of various genes including proinflammatory cytokines.
Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay.
No sample metadata fields
View SamplesLipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand, induces the expression of various genes including proinflammatory cytokines, and the expression is modified by the presence of Zc3h12a.
Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay.
No sample metadata fields
View SamplesDNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.
DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.
Sex, Age, Race
View SamplesBackground: High density lipoprotein (HDL) protects the artery wall by removing cholesterol from lipid-laden macrophages. However, recent evidence suggests that it might also inhibit atherogenesis by combating inflammation. Methods and Results: To identify potential anti-inflammatory mechanisms, we challenged macrophages with lipopolysaccharide (LPS), an inflammatory microbial ligand for Toll-like receptor 4 (TLR4). HDL inhibited the expression of 33% (301 of 911) of the genes normally induced by LPS, microarray analysis revealed. One of its major targets was the type I interferon response pathway, a family of potent viral immunoregulators controlled by TLR4 and the TRAM/TRIF signaling pathway. Unexpectedly, HDLs ability to inhibit gene expression was independent of cellular cholesterol stores. Moreover, it was unaffected by downregulation of two ATP-binding cassette transporters, ABCA1 and ABCG1, that promote cholesterol efflux. To examine the pathways potential in vivo relevance, we used mice deficient in apolipoprotein (apo) A-I, HDLs major protein. After infection with Salmonella (a Gram-negative bacterium that expresses LPS), apoA-Ideficient mice had 6-fold higher plasma levels of interferon-beta-a key regulator of the type I interferon response than did wild-type mice. Conclusions: HDL inhibits a subset of LPS-stimulated macrophage genes that regulate the type I interferon response, and its action is independent of sterol metabolism. These findings raise the possibility that regulation of macrophage genes by HDL might link innate immunity and cardioprotection.
High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide.
Specimen part
View SamplesSTING plays a key role in detecting cytosolic DNA and induces type I interferon responses for host defense against pathogens. Although T cells highly express STING, its physiological role remains unknown. In this study, we show that costimulation of T cells via TCR and STING ligand induce type I IFN responses like innate immune cells. Overall design: Naïve CD4+ T cells were stimulated with anti-CD3/28 in the presence or absence of STING ligand and analyzed the transcriptome using Illumina HiSeq1500.
Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function.
Age, Specimen part, Cell line, Subject
View SamplesThe gene expression patterns in the dentate gyrus of wild-type mice during postnatal development were examined using Affymetrix GeneChip arrays.
Transcriptomic immaturity inducible by neural hyperexcitation is shared by multiple neuropsychiatric disorders.
Specimen part
View Samples